
IFEUNES™

June 1983 Volume IV, No. 1
V.VvXsvX’XvXv?

SX

All you dBASE II hotshots
are about to get what you
deserve.

1 •

I
Illllllllllllllllllllli

You've written all those slick
dBASE II programs.

Business and personal
programs. Scientific and
educational applications.
Packages for just about
every conceivable informa-
tion handling need.

And everybody who
sees them loves them because
they're so powerful, friendly and easy to use.

But that's just not good enough.
Uh-uh.
Because now you can get the gold and the

glory that you really deserve.

Here's how.
We've just released our dBASE II

RunTime™ application development module.
And it can turn you into an instant

software publisher.
The RunTime module condenses and

encodes your source files, protecting your
special insights and techniques, so you can
sell your code without giving the show away.

RunTime also protects your margins
and improves your price position in the
marketplace. If your client has dBASE II, all
he needs is your encoded application. If not,
all you need to install your application is the
much less expensive RunTime module.

We'll also provide additional "how to"
information to get you off and running as a
software publisher sooner.

And we'll make your products part of
our Marketing Referral Service. Besides put-
ting you on our referral hotline, we'll publish
your program descriptions and contact
information in dBASE II Applied, a directory
now in computer stores world-wide.

Go for it.
But we can't do any of this until we

hear from you.
For details, write RunTime Applications

Development, Ashton-Tate, 10150 West
Jefferson Boulevard, Culver City, CA 90230.

Or better yet, just call (213) dRASE '
204-5570. And get what you
deserve today.

We'll tell the world.
With your license for the dBASE II

RunTime module, we provide labels that
identify your program as a dBASE II applica-
tion, and you get the benefit of all the
dBASE II marketing efforts.

ASHTON -TATE ■

©Ashton-Tate 1983.

Lifelines z=

The Software Magazine

Publisher: Edward H. Currie
Editor in Chief: Susan Sawyer
Production Manager: Kate Gartner
typographers: Paul Blockhaus, Rosalee Feibush
Printing Consultant: Sid Robkoff/E&S Graphics

New Versions Editor: Lee Ramos
Technical Editor: Al Bloch
Advertising Manager: Carolann Abrams
Cover: Kate Gartner

Opinion

2 Editorial

Software Notes

30 Thunder Clock Routine
Edward H. Currie

Features

4 High Precision Integer Math Library
Thomas Hill

17 A Programmer's Notes On Quickcode

David Walker
37 Macro of the Month

Mike Olfe

Product Status Reports

36 New Products
Marilyn Harper

21 PL/1 —You’re Going To Love It
Bruce H. Hunter

26 Auto-Start Your CP/M
Steven Fisher

31 A Reveiw of Alpha Software's Data
Base Manager

Ron Watson

37 New Books

37 New Versions

Copyright © 1983, by Lifelines Publishing Corporation. No portion of this
publication may be reproduced without the written permission of the
publisher. The single issue price is $3.00 for copies sent to destinations
in the U.S., Canada, or Mexico. The single issue price for copies sent to
all other countries is $4.30. All checks should be made payable to Lifelines
Publishing Corporation. Foreign checks must be in U.S. dollars, drawn on
a U.S. bank; checks, money order, VISA, and MasterCard are aceptable.
All orders must be pre-paid. Please send all correspondence to the Publisher
at the address below.

Lifelines (ISSN 0279-2575,USPS 597-830) is published monthly at a subscrip-
tion price of $24 for twelve issues, when destined for the U.S. Canada,
or Mexico, $50 when destined for any other country. Second-class postage
paid at New York, New York, and other locations. POSTMASTER, please
send changes of address to Lifelines Publishing Corporation, 1651 Third
Avenue, New York, NY 10028.’

Program names are generally TMs of their authors or owners. The CP/M User is not affiliated with Digital Research,
Inc.
Lifel ines-TM Lifelines Publishing Corp.
The Software Magazine—TM Lifelines Publishing Corp.
SB-80, SB-86-TMs Lifeboat Associates
CP/M and CP/M-86 reg. TMs, Access Manager, PLI-80, PLI-86, Pascal MT+, MP/M, TMs of Digital Research Inc.
BASIC-80, MBASIC, Fortran 80-TMs Microsoft, Inc.
KIBITS-TM Bess Garber
Wordmaster & WordStar-TAAs MicroPro International Corp.
PMATE—TMs Phoenix Software Associates, Ltd.
Z80-TM Zilog Corp.
Mr. Edit-TM Micro Resource Corp.
MINCE-TM, Mark of the Unicorn

pinion _______
by Edward H. Currie

Meanwhile Back on Earth . . .
The only thing that the microcomputer world has spawn-
ed faster than the new hardware and software technology
is prophets, gurus, soothsayers, experts, geniuses, and vi-
sionaries. In the micro industry such terms are used in-
terchangeably! The classic science fiction book "The
Dragon's Egg" is in some sense a parable that might well
characterize the microcomputer industry.

The story is based upon the premise that an incredibly
dense object is hurdling towards earth carrying with it a
newly evolved life form which goes through a generation
of evolution approximately every 15 milliseconds. As the
object approaches earth, manned probes are sent out to
investigate. During the course of the subsequent investiga-
tions the inhabitants of the incredibly dense object begin
to be aware that they are under surveilance. Due to the
primitive state of the inhabitants they are initially puzzl-
ed. However within a very short period of time they quick-
ly evolve beyond this point to an intellectual state far in
advance of the level of sophistication of the earth creatures.

Those of us who are approaching the celestial
hemishphere of microcomputerdom are also resting on a
base of incredible density but in this case of ignorance/
However we, too, are evolving rapidly and the radiation
and emanations from this hemisphere are rapidly taking
on all the sophistication of a babbling baby. There is sound
and fury but most of it signifies little more than the primor-
dial state of the industry and its perennially expounding
pontificates. Many of the self-appointed priesthood spin
fanciful tales based on virtually little or no understanding
of computers and the revolutions they are producing. The
industry is for the most part highly incestuous. Its consti-
tuents speak loudly and often of "current trends," "the
future," and "the role that various newly emerging
technologies will play." The industry develops products
which in many cases are so complex as to all but preclude
their ever reaching a large number of endusers.

They are widely discussed, touted, applauded, and within
a short period of time, replaced and/or forgotten.

A litany of allegedly prophetic pronouncements have been
dogmatically delivered only which prove to be the pro-
gnostications of false prophets.
Among these "orbiter dictums" were:
1) Multiuser operating systems were viable for micros
2) Multitasking was important for micros
3) People would write all their own programs in BASIC
4) Pascal would replace all other languages
5) Program generators would replace generic software
6) Eight bits was dead
7) Computers would get cheaper and cheaper

8) Dealers were the only significant distribution channel
for software
10) FORTH was a good general purpose programming
language
11) Winchesters weren't viable without some new backup
technology other than floppies
12) The 8086 would never get off the ground because of the
advent of the 68000

13) The 6800 , 6502, 68000s would replace the 8080, Z80,
8088/8086 processors
14) All software would end up in ROM (to be known as
petrified software)
15) That Texas International would wipe out everybody
else in the micro market
16) The Apple was a good business machine
17) Parity checking wasn't appropiate for micros
18) Radio Shack would go out of the micro business the
same way that everyone left the CB market but sooner.
19) "High Resolution Graphics" was high resolution
20) The IBM-PC wasn't viable without CPM/86
21) Floppy disks would be available for less than one hun-
dred dollars
22) Bubble memory would replace floppys
23) Fifty dollar software would replace all other software
24) Software stores would be as common as record stores
25) Businessmen weren't interested in anything other
than accounting software and spreadsheet programs.
26) That micros were suitable for full accounting functions
in small businesses
27) Hardware manufactures didn't have to support soft-
ware purchased by their customers from third parties
28) 2N bits is better than N bits, 256 bits is better than 128
bits, 128 bits better than 64 bits, 64 bits is better than 32
bits, 32 bits is better than 16 bits, 16 bits is better than 8 bits,
8 bits is better than 4 bits, 4 bits is better than 1 bit, 1 bit is
better than zero bits.
29) The Japanese would take over the microcomputer soft-
ware/hardware market the same way they dominated the
camera/television/stereo marketplace.
30) Sotware technology could easily keep pace with hard-
ware technology.
31) The Last Program version 2.3 was the last program . . .
32) Good databases for micros were readily available.
33) The most significant use of micros in the home was
balancing checkbooks (continued on page 35)

Lifelines/The Software Magazine, June 1983

LIFEBOAT HAS THE ANSWER FOR ALL POPULAR MICROCOMPUTERS '
8-Bit Software Available Today - New Additions Regularly
System Tools BASIC Compiler STRING/80 Mail ing List Systems Home Tax
Bug and uBug BASIC-80 STRING BIT CBS Label Option Pak Insurance Agency
Despool PaZic II SuperSort Mailing Address Management (Univair]
Disilog BD Software C Compiler ULTRASORT II MailMerge for WordStar Legal Time Accoutning
Distel C BASIC-2 VISAM NAD Master Tax
EDIT CB-80 Access Manager Postmaster Medical Management
EDIT-80 CIS COBOL (Standard] QUICKCODE (Univair]
Filetran CCBOL-80 Financial Accounting Medical Management
IBM/CPM FORTRAN-80 Word Processing Packages (Family Univair]
MAC KBASIC Systems and Aids BOSS Financial/ BOSS Payroll,PAS 3 Medical
MACRC-80 muLISRmuSTAR DocuMate/Plus Accounting System PAS 3 Dental
Panel Pascal/M Letteright Financial Pkgs. [PTree] Professional Time
PASM Pascal/MT+w/SPP MagicPrint Financial Pkgs. (SSG) Accounting
PUNK Pascal/BZ MicroSpell General Ledger Acctng (PTA]
PUNK II Pascal/Z PeachText [Univair] Property Management Pkg
PMATE PL/1-80 SMARTKEY/SMARTPRINT (American Software)
Reclaim Precision Basic Spellguard Numerical Problem- Property Management
Reformatter STIFF UPPER LISP TEX Solving Tools (PTree)
SID Timin FORTH Textwriter III Analyst Tax Planner
TRS-80 Model II Gust. Disk Tmy-C Wordindex UniCalc Wiremaster
Unlock Tiny C-TWO WordStar Multiplan
WordMaster UCSD Pascal WordStar French FPL Lifeboat After Hours
XASM 05,09,18,.48,51,65 Whitesmiths' C Compiler WordStar Spanish Microstat Backgammon/Gomoku

68,75,400, F8, Z8 XYBASIC WordStar Customization muMATH/muSIMP
ZAP80 Notes PLAN80 Educational Tools
ZDT Language and Applica- Statpak Torricelli Author
Z80 Development tion Tools Data Management T/MAKER III Torricelli Studio

Package BASIC Utility Disk Systems MATH*
ZSID DataStar dBASE II Disk Operating Systems

FABS The FORMULA + G.A.S. Professional And CRM-80
Telecommunications FABS II HDBS Office Aids SB-80
ASCOM Forms 2 for CIS COBOL Hoe Apartment Management
BSTAM MAG/samE MAG/base 1,2,3 (Cornwall]
BSTMS-80 DES-crypt CBS Dental Management
RBTE-80 dUTIL

MAG/sort
MDBS
MicroSeed

(Univair]
Dental Management-Family

Languages M/SORT for CCBOL-80 MicroShell Univair
ALGCL-60 Programmer's Apprentice T.I.M. Ill Friday
APLA/80 PSORT

QSORT
RbportStar
InforStar

GrafTalk

NEW - 16-Bit Software Available for the IBM PC, plus. . .
Conversion Software: Numerical Problem- Home Tax Languages Disk Operating Systems
8-Bit/16-Blt Solving Tools CB-86 SB-86
XLT-86 Math* PC Graphic Tools CBASIC-86 CRM-86
EM-80/86 PLAN 86 Halo Lattice C Compiler Concurrent CRM-86

muSIMRmuMATH FAST GRAPHS muLISRmuSTAR MRM-86
Emulators UniCalc Pascal MT +86
Emulator/86 Statpak Medical and Dental Aids PL1-86 Apple Software

Multiplan Dental Management PL/MYCRO-86 The Home Accountant
Word Processing T/Maker III System PL/MYCRO-87 APPLI-CARD
Systems & Aids FPL Medical Management SoftCard
MAGIC KEYBOARD System Language and Applica- SoftCard Premium System
Multi Font Mail ing List Systems PAS-3 Dental tions Tools
WordStar Postmaster PAS-3 Medical FABS PC Hardware and Accessories
MicroSpell MailMerge MAG/sam-E Break-Out Box
Spellguard Financial Accounting WordMaster Diskette Drive Headcleaning

Sorting Tools Packages DES-crypt Kits
Text Editor PSORT The Home Accountant PC-Create Flippy Disk Kit
PMATE-86 AutoSort/86M General Ledger System Tools Floppy Savers

PeachTree Financial The C-Food Smorgasbord Smartmodem
Data Management Professional and Software MicroFloat Baby Blue
Systems Office Aids Telecommunications PL/1-87 Baby Tex
dBASE II The Executive Alert System ASCOM UT86 Quarter Meg
MAG/base1,2,3 Insurance Agency BSTAM Panel-86 8" Disk Controller
T.I.M. Ill Management PUB Baby Talk Board

Legal Time Accounting Networking Tools PUNK-86
Tax Planner
Master Tax

PC-NET Flight Simulator

Plus a full line of Books and Periodicals
SEND FOR FULL SOFTWARE DESK REFERENCE WITH DESCRIPTIONS OF ALL

THESE PLUS A WHOLE LOT MORE
LIFEBOAT • 1651 Third Ave. • New York, N.Y. 10028

(212) 860-0300 • TWX: 710-581-2524 (LBSOFT NYK) • Telex: 640693 (LBSOFT NYK)
Products are generally TMS or Reg TMS of the Authors Copyright © 1983 Lifeboat Associates

Feature High Precision Integer Math Library

by Thomas Hill
Introduction Implementation
The program library presented here was adopted from an
article published in Dr. Dobbs Journal in March of 1977, by
M.G. Dineley of Manchester, England. Since first seeing
these routines, I have been slowly developing them into a
usable library of extended precision math functions. On
the whole, they remain in the same form as Mr. Dineley
first presented them, but I have spent some time optimiz-
ing the code for speed, as will be detailed later on in this
article. A large part of the added code deals with applica-
tions of the routines to certain number theory problems
and to cryptography (a special interest of mine). As far as
I can determine, no further works have been published
referring to these routines, so I will take it upon myself to
be the apparent first to actually present examples of their
use, and to provide information concerning time
measurements and optimization.

The routines presented here are designed to allow the
assembly language programmer to conveniently manip-
ulate large integers. Included are low level sign
manipulators, deque utilities, simple positive integer ad-
dition and subtraction, generalized addition, subtraction,
multiplication, division, modulus, and square root extrac-
tion. Each routine is coded as a separate entity, with
declared PUBLICS and EXTERNALS for use with relocat-
ing assemblers, Microsoft's MACRO-80 in particular.
The integers are represented in RAM as signed binary

values, extending from one (1) byte to a maximum of 128
bytes per integer. As may be apparent from the last
sentence, the values manipulated do not maintain a cons-
tant storage size. Instead, they may expand or contract
within the 128 byte maximum, depending upon the preci-
sion demands of the routines which manipulate them.

Abstract
There arises in the world of numbers a frequent need to
manipulate and perform simple arithmetic operations
upon large integer values. Examples of the uses of such a
need may be seen in cryptography, natural number
theory, the generation of prime numbers, and just plain
fun. The set of 8080 assembly language functions describ-
ed herein have been developed with large integers in
mind. They provide the means to manipulate binary
representations of large integer values, and include the
arithmetic functions of addition, subtraction, multiplica-
tion, division, modulus, and square roots. Each function
is constructed in a modular fashion, allowing the applica-
tions developer to select from a library of available
functions.

Possible Uses _________________________
The uses to which this package may be put is limited
only by the imagination and requirements of the user. I
currently have packages which produce large prime
numbers, extract the Greatest Common Divisor (GCD) of
two integers, produce the Least Common Multiple (LCM)
of two integers, generate random numbers, and compute
large factorials. Also completed is a package which fulfills
a demonstration function, acting as a simple 'desktop
calculator" program. Future uses (this was my primary
reason for implementing the package) are applications to
cryptography, particularly the cryptographic methods
described by Martin E. Hellman in the August 1979 issue
of Scientific American, which use large prime numbers and
their products to encode data. If there is sufficient in-
terest, and I have the time, I may prepare further articles
describing these packages and their uses.

The internal format of integer values is composed of a
sign and length byte, and up to 127 bytes of value, stored
as a multi-byte binary number. The first byte (byte 0) of the
value is the sign and length indicator. The most significant
bit (bit 7) is the sign bit: If the bit is one, the value is
negative; if zero, the value is positive. The remainder of
the byte (7 bits) is a count of the remaining bytes in the
value, to a maximum of 127. The special case of zero is in-
dicated by a sign/length byte of zero. The diagram below
illustrates the storage format:

[Address] [Address 4-1] [Address + N]
MSB = sign Least Sig. Most Sig.

Rest = length Byte Byte
This format allows the manipulation of integer values to
2**1024. Future implementations may expand this to allow
integers to 2**32760 by allowing three nibbles for length.

About the Library
Listing 1 is the source code for each of the library modules.
Note that they must be separated into individual files
before assembly. Each of the library routines is as modular
as possible and each contains its own data areas, thus
avoiding as much as possible the side effects arising from
improper manipulations of common data areas. The
development of the library begins (maybe not so obvious-
ly) with the very simple routines which retrieve and
manipulate the sign and length byte. There are six of these
modules, termed LDC1, LDC2, LDB1, LDB2, INRM, and
DCRM. These modules are described below:
LDC1 This module loads the C register with the length

indicator of the integer pointed to by the HL regis-
ter pair. The sign bit is stripped.

Lifelines/The Software Magazine, June 19834

specified by the DE register to the area pointed to
by the address in the HL register. Any data at the
destination will be overwritten.

PARE This module compares two multibyte integers.
The addresses are passed in the HL and DE
registers. Upon return the condition flags are set
as follows: ZERO flag is SET if (DE) = (HL),
CARRY flag is SET if (DE) > (HL), CARRY is
RESET if (DE) < (HL). The two multibyte data
strings are left unchanged upon return.

ADD1 This module will add two multibyte data strings
together, returning the result in the space pointed
to by the DE register. Note that this destroys the
previous contents at (DE). This module will add
POSITIVE values ONLY.

SUB1 This module will subtract two multibyte data
strings, (HL) from (DE). The result is placed at the
space pointed to by the DE register. This module
will subtract POSITIVE values ONLY.

Now that we have built the foundations, it becomes a sim-
ple task to implement the mid-level arithmetic routines
outlined below.

ADI This module provides general addition of both
positive and negative multibyte integer values.
The arguments are passed as pointers in the HL
and DE registers and the result is returned in the
data area pointed to by the DE register.

SB1 This module performs the complementary func-
tion of subtraction of positive and negative
values, subtracting the integer specified by the
address passed in the DE register from the integer
pointed to by the HL register. The result is return-
ed in the area pointed to by the DE register.

MULT This module provides generalized multiplication
of both positive and negative values, returning
the result in the area pointed to by the DE register.

DIVM This module provides the Modulo function,
returning the remainder of the division: (DE) /
(HL). The remainder is returned as an integer,
carrying the sign of the dividend. Note that -30
MOD 7 = 2, not 5.

DIV This module is the general purpose divide func-
tion, operating upon both positive and negative
values. The dividend is passed as a pointer in the
DE register, and the divisor is passed in the HL
register. The quotient is returned in the space
pointed to by the DE register.

DIVR This module operates similar to DIV, except that
answers are rounded rather than truncated.

SQRT This module provides the square root of the
multibyte integer data pointed to by the DE
register. The answer is returned in the area
pointed to by the DE register.

SQRTR This module also provides the square root, retur-
ning the rounded answer in the area pointed to by
the DE register.

This comprises the basic library. Current algorithms for
multiplication and division use repeated addition and

(continued on next page) 5

LDC2 This module operates as LDC1, but will return to
the caller's caller if the length of the specified in-
teger is zero.

LDB1 This module performs a function similar to LDC1,
loading register B with the length of the integer
specified by the contents of the DE register.
Again, the sign bit is stripped.

LDB2 This module is analogous to LDC2, operating
upon the integer specified by the DE register and
returning to the caller's caller on length zero.

INRM This module will increment the length indicator
of the integer specified by the HL register. The
sign bit is preserved, and the routine aborts to an
error message upon overflow.

DCRM This module decrements the length of the integer
specified by the HL register. If the resulting
length is zero, the integer is set to absolute zero.
The ZERO flag is SET on return if the resulting
length is zero.

The next group of modules function together to permit
manipulation of integer storage space as a double ended
queue (deque). These modules use the length indicator
utilities previously described as building blocks for in-
teger space manipulation.

PSHL This module will insert the byte in the Ac-
cumulator into the low (least significant) end of
the multibyte integer pointed to by the HL
register. The other bytes are pushed up and the
precision (length) is adjusted.

POPL This module removes a byte from the low end of
the multibyte data pointed to by the HL register
and returns it in the Accumulator. The remaining
bytes are pulled back and the length is adjusted
accordingly.

PSHH This module inserts the byte in the Accumulator
into the high (most significant) end of the
multibyte data specified by HL. The length is ad-
justed accordingly.

POPH This module removes the byte at the high end of
the data specified by the HL register and returns it
in the Accumulator. The length is adjusted.

Using the preceding modules as a base, the following
modules provide low level arithmetic operations, includ-
ing simple addition, subtraction, left and right rotates,
comparisons, and memory to memory moves.

INCR This module increments by one the integer
specified by the HL register. The precision is ex-
tended if necessary.

LEFT This module will double a multibyte value
pointed to by the HL register by a multibyte left
shift. Overflow is detected and vectored to the
overflow error module. The precision is extended
if necessary.

RIGHT This module halves the integer specified by the
HL register by a simple multibyte right shift. The
precision is adjusted if necessary.

MOOV This module will transfer the multibyte data

Lifelines/The Software Magazine, Volume IV, Number 1

subtraction, respectively. Future modifications will utilize
more efficient algorithms. The balance of the functions in-
cluded in the library are built up from combinations of the
mid-level functions. Two functions of special interest are
the input and output modules, HPINPUT and HPOUT
respectively.
Listing 2 is the source for the output module, HPOUT.
Notice that this is version 2 of the output. The original
module used modulo ten operations to recover the in-
dividual digits. This version uses a more complex but
much faster technique. The benchmark times presented
later are for the original output module. Version 2 pro-
vides a speed increase of approximately 50 times. HPOUT
converts the internal multibyte binary value pqinted to by
the DE register into ASCII digits suitable for human
perusal. Commas are placed at appropriate intervals and,
in cases where the integer is longer than one screen line,
carriage return, line feed pairs are sent at the first comma
location after column 75.
Listing 3 is the source of the input module, HPIN. The in-
put module accepts ASCII input from the console, con-
verting successive digits into the internal multibyte binary
format and storing it at the data area pointed to by the DE
register. Conversion halts upon encountering a non-digit.
Certain characters are trapped and interpreted by the
HPIN routine to allow editing of the input. In particular,
the Backspace key may be used to delete and back over the
last digit(s) entered. The Carriage Return key is trapped
and echoed to the console, but is otherwise not acted
upon. This allows the entry of integers longer than one
screen line without terminating entry.

Timing Considerations
After developing the routines and removing any bugs
which crept in, timing tests were initiated. Using a Moun-
tain Hardware clock board in a stopwatch configuration,
each of the mid-level modules was timed and least
squares formulas developed to describe each module's
behavior. Note that each of the times reported below is for
the OPERATION only. It does not include the time spent
in the supporting program framework. The results may be
summarized as follows:
Addition and Subtraction: With the current maximum of 127
bytes per integer, addition and subtraction times will
never exceed 1.0 milli-second. This is based upon a sam-
ple size of 200 data pairs, composed of 1) the number of
digits in the sum (or difference), and 2) the time in
milliseconds required for the operation.
Multiplication: Multiplication times depend primarily
upon the length of the input arguments. Since the length
of the product of two arguments is approximately the sum
of the lengths of the arguments, the data pairs for this tim-
ing test consisted of 1) the number of digits in the product
and 2) the time in milliseconds required for the
multiplication operation. The least squares result sug-
gests that the time for a multiplication will never exceed
310 milliseconds.

Division: Timing tests for division (and by extension, for
modulo) are particularly sensitive to the lengths of both
the divisor and the dividend. After studying the division
method and running preliminary timing tests, it was

decided to use data pairs composed of 1) the difference in
length of the dividend and divisor, and 2) the time in
milliseconds. This approach resulted in a least squares
equation which suggests that the worst case division
(single digit divisor and 300 + digit dividend) would never
exceed 2,500 milliseconds. Note that this time rapidly gets
better as the difference in length between dividend and
divisor decreases in magnitude.
Square Root: The square root algorithm is exceptionally
fast, producing a worst case execution time of 2500
milliseconds for the maximum integer value. The data
pairs used consisted of 1) the length of the input argu-
ment and 2) the time in milliseconds.
Output Conversion: The time spent converting the internal
storage format to a form suitable for human comprehen-
sion has not been measured to my satisfaction yet,
although initial tests seem to indicate that the major bot-
tleneck is here. Initial times predict that conversion of the
maximum value may take close to 75 seconds. Note that
this figure is dependent upon the transmission rate of the
terminal, which in this case is a serial CRT operating at
9600 baud.
Random Number Generation: The random number
generator currently is configured to produce values rang-
ing from 1 to 40 digits in length (less than 1/4 the max-
imum value). Timing tests indicate a new random number
can be generated in slightly less than 100 milliseconds.

Assembling the Modules
The modules were assembled with Microsoft's M80
relocating macro assembler. Each module must be
assembled separately to produce a .REL file, then the
various modules are combined into a .REL library with
the Microsoft LIB library manager. The order in which the
modules are placed in the library is very important, since
the L80 linker makes one pass through any library and all
external references must be resolved at that time. The
table below shows the module order for the library I am
currently using:

Library order, beginning — > end

PERMUT COMBIN POWER HPOUT2 HPIN NFACT
HPLCM HPGCD HPPRIM HPRAND HPX HPDIV
HPSQRT HPMULT HPADSB HPSUB1 HPADD1 HPPARE
HPMOOV HPRIGH HPLEF HPINCR HPPOPH
HPPSHH HPPOPL HPPSHL HPDCRM HPINRM
HPLDB2 HPLDB1 HPLD HPLDC1 OVFLW DATA
OUTPUT

After the library has been prepared, application programs
must be linked to the library using the L80 linker program.
Be sure that you specify a data segment and a program
segment, or you will have 'time bomb" programs (they
blow up at unpredictable moments). Listing 4 is a sample
assembly and link session for the upper-level function
FACT (factorial). The source listing for the FACT program
is shown in listing 5. Listing 6 is a sample run of the fac-
torial test program.

Validation of Mid-Level Modules _____
Obviously, I am not going to multiply two 70 digit
numbers to check the results of the program. If anybody

6 Lifelines/The Software Magazine, June 1983

linking loader (L80). Each module is structured from
previously defined modules and each module com-
municates at the data interface, passing arguments as real
addresses stored in processor registers. The modules pro-
vide the mid-level arithmetic functions of addition, sub-
traction, multiplication, division, modulo division,
square root, input conversion, and output conversion.
The defined data format provides integer magnitudes of
approximately 300+ ASCII digits length. Validation and
timing test results are presented and optimization efforts
are discussed. Also discussed is future code optimization
by alterations in the algorithms used in the mid-level
functions. Later articles will describe in detail the random
number generator and the modules designed to produce
1) Factorials, 2) Least Common Multiple, 3) Greatest
Common Divisor, 4) Exponential, 5) Prime Number gen-
erator, 6) Disk input and output routines, and a simple 8
function calculator developed to demonstrate and* test
each of these modules in a working environment.

Final Words
There you are. There is probably a couple of months
worth of work tied up in these routines. Two of the things
on my Tist of things to do' is to extend the storage format to
allow more than 127 bytes of mantissa, and to add the
framework and bells to produce a reasonable facsimile of
an integer BASIC which handles 300+ digit integers. A
generalized expression analyzer module which will ac-
cept algebraic arithmetic expressions and produce a
Reverse Polish stack structure is nearing completion, and
should be ready for public consumption by the time this
article sees daylight.

I realize that most of you would rather not spend hours
slaving over a keyboard entering the source code into your
system, so if you want a copy of the source files, plus
whatever else I may have developed since you read this,
send me $25.00 to cover my copying costs and postage
(plus a little to calm my money hungry nature), and I'll
send you a single density CP/M disk with source files and
documentation. Currently I have completed the following
library modules and/or applications:

Prime Number Generator
Greatest Common Divisor
Least Common Multiple
Factorial
Permutations
Combinations
Random Number Generator
Raise to Power
8 Function Calculator
Store Integer to Disk
Generate Public Key Array

(as per M.E. Hellman's article)

I will periodically publish update articles describing new
modules and applications (at least until Lifelines gets tired
of me) which I or others have developed. If you come up
with a good application of the library, I would certainly
appreciate hearing from you.

References
1. "The Art of Computer Programming," Volume 2, by Donald Knuth.
Addison-Wesley, Publishers.

2. "The Mathematics of Public Key Cryptography," by Martin E.
Hellman. Scientific American, August 1979, pages 146-157.

wishes to do this, more power to him. However, checks
were made using the new Hewlett-Packard HP-16C Com-
puter Programmer's calculator, which allows addition,
subtraction, multiplication, and division of 64 bit values.
Although 64 bits is about 6/100ths of the maximum bit
length of the storage format, it was considered that if the
results matched at this point, further checking was
superfluous. All of the mid-level modules are validated to
the 64 bit argument length, and checks were made to
lengths longer than this by using the modules "against"
themselves. For example: Two numbers were multiplied
together, then the product was divided by one of the
arguments to return the other argument. This type of test
was performed upon all modules to the maximum argu-
ment size. All modules passed this test, although it
should be noted that the square root routine could not be
checked in this manner due to truncation errors. The divi-
sion routine also showed truncation errors, but they were
partially recoverable by using both the division and
modulo functions to generate a quotient and a remainder.

Optimization
Once the modules were all written and tested, they were
timed using the procedures outlined previously. After
developing time estimates for all the mid-level modules,
Digital Research's SID program was used in conjunction
with the "HIST" histogram utility provided with SID to
isolate the "hot spots" in each module. (Hey, that might
make a good article: The uses of HIST.UTL and
TRACE.UTL in program developments. After isolating
the program segments where the most program execution
time was occurring, code optimization was performed,
replacing certain subroutine calls with in-line code, re-
arranging program segments, and utilizing Z80 instruc-
tions. After optimization, timing tests were again per-
formed. Although appreciable speed increases resulted
from program flow manipulations, very little speed in-
crease was seen after Z80 code replacement. If fact, certain
routines showed a measurable speed decrease! Some
research into the execution times of 8080 versus Z80 in-
structions seemed to indicate that no significant speed in-
creases would be obtained through the use of Z80 code, so
the modules were left in 8080 code for portability.
Further speed increases may be gained by using different
algorithms for the multiply and divide routines. In
Volume 2 of Knuth's "Art of Computer Programming" an
algorithm for multiplication of large binary numbers is
described, which appears to allow an increase in speed of
some 40 to 50 percent. Other algorithms are presented
which may provide even more speed increases, although
program complexity will increase, possibly enough to off-
set the time decreases. Further development is currently
being done in this area.

Other areas in which algorithm optimizations may be ap-
plied are the input and output conversions (radix
changes). Again, Knuth supplies some efficient
algorithms which may be implemented at a later date.

Summary ______________________
Presented is a set of modules developed in 8080 assembly
language and prepared in a modular fashion suitable for
use by Microsoft's relocating macro-assembler (M80) and

Lifelines/The Software Magazine, Volume IV, Number 1

High precision math functions derived from March
1977 Dr. Dobb’s Journal originally written by M.G. Dinneley of
Manchester, England.

Prepared by Thomas Hill
200 Oklahoma St.
Anchorage, Ak. 99504

08/10/82 Version 1.1
Execution speed optimized.

; > LDB1 . Uses NIL
; Loads register B with the length indicator specified
; by the DE register — strips sign bit.

; > LDB2 : Uses LDB1
; As LDB1 but returns to caller’s caller if result =
; ZERO.

; > INRM: Uses NIL
; Increments length indicator specified by HL.

Preserves sign bit. HALTS on OVERFLOW.

; > DCRM: Uses NIL
; Decrements length indicator specified by HL -
; reduces it to absolute ZERO even if sign bit set.
; Returns ZERO flag SET if result is = ZERO.

; *** Deque Utilities:
; These four routines are used to manipulate multi-
; byte data as a Deque (double-ended queue).

; > PSHL : Uses LDC1
; Inserts a byte from the A register into low end of
; multibyte data specified by the HL register. Pushes
; up other bytes.

; > POPL : Uses LDC2
; Removes a byte from low end of multibyte data
; specified by HL reg. into A register. Pulls back
; other bytes.

; > PSHH : Uses LDC1
; Inserts a byte from A reg. into high end of
; multibyte data specified by HL pair.
; > POPH : Uses LDC2
; Removes a byte from high end of data specified by
; HL pair into A register.

. ***** sjm p|e Arithmetic:

; > INCR : Uses LDC1
; Increments a value specified by the HL pair and
; extends precision if necessary.

; > LEFT : Uses LDC2
; Doubles a mulibyte value specified by HL pair (Left
; shift).

; > RIGHT : Uses LDC2
; Halves a multibyte value specified by HL pair (Right
; shift).

; > MOOV : Uses LDB1
; Moves a multibyte value from (DE) to (HL).

; > PARE : Uses LDC1
; Compares multibyte data from (DE) with (HL). Sets
; ALL condition flags ZERO if equal, CARRY set if
; greater than.

; > ADD1 : Uses LDC1, LDB1
; Adds multibyte values (HL) to (DE) — result in (DE).
; POSITIVE values ONLY.

; > SUB1 : Uses LDC2, LDB1
; Subtracts multibyte values (HL) from (DE) — result
; to (DE).
; POSITIVE VALUES ONLY.

; ***** High level arithmetic:

; > AD1 &SB1 : Uses ADD1, SUB1
; Adds and subtracts positive and negative values.

06/17/81 Version 1.0
All operations operate upon integer values stored in
the following multi-byte format:

[Address] [Address + 1],... [Address + N]
Sign, Length Least Sig. Most Sig.
Bit 7 Bits 6-0 Byte Byte

Sign bit = 1 indicates negative value.
Sign bit and length = 0 indicate value of zero.
Maximum length is 128 bytes, for values of ± 1 * 10 1308.

; Algorithms used are:
; Let D be any digit : 0 < = D < R , where R is the Radix
; N be any arbitrary integer.

; »»»> Square Root:
; Let A be the Argument
; B be the Working Accumulator
; C be a Working Accumulator, initially ZERO.

; 1) Choose the greatest B: B = D*R**2*N &
; B = B*(B + C)<= A
; 2) If B = 0 then GOTO 5
; 3) A = A - B * (B + C)
; 4) C = C + 2 * B : GOTO 2
; 5) Result = C/ 2

; »»»» Divide:
; Let A be the Dividend
; B be the Divisor
; C be the answer, initially ZERO.

; 1) Choose the greatest D and the greatest N :
; D *B*R* *N<=A
; 2) A = A - D * B * R ** N
; 3)C = C*R + D
; 4) If N = 0 then GOTO 6
; 5) N = N - 1 : GOTO 1
; 6) Remainder = A : Result = C

; »»»> Multiply:
; Let A be the Multiplicand
; B be the Product, initially ZERO
; C be the Multiplier
; 1)D = CModR
; 2)C = C/R
; 3)B = B + D*A
; 4)A = A*R
; 5) If COO then GOTO 1
; 6) Result = B

***>

; Description of included routines:

; ** Length indicator utilities:

; > LDC1 : Uses NIL
; Loads register C with the contents of the length
; indicator specified by the HL register — strips the
; sign bit.

; > LDC2 : Uses LDC1
; As LDC1 but returns to caller’s caller if result =
; ZERO.

8 Lifelines/The Software Magazine, June 1983

LDC1: MOV
RAL
ORA
RAR
MOV
ORA
RET

A,M

A

C,A
A

; get length
: strip sign
; clear carry

; loadC
; check for zero

LDC2: CALL LDC1
JZ ABRT ; zero result
RET

END

; > MULT : Uses LDB2, MOOV, RIGHT, LEFT, ADD1.
; WorkTI &T2.
; Multiplies (DE) by (HL) — result in (DE).

; > DIVM : Uses LDC1, LDB1, MOOV, PSHL, PARE,
; SUB1, INCR, RIGHT, LEFT WorkTI &T2.
; Reduces (DE) modulo (HL).
; NOTE: - 30MOD7 = 2. . .not5

; > DIV
; Divides (DE) by (HL) - Result to (DE)

; > DIVR
; As DIV but rounds up on > 0.5 remainders

; > SORT Uses PSHL, ADD1, PARE, SUB1, RIGHT,
; INCR, MOOV. WorkTI &T2.
; Square roots (DE) — result to (DE).

; > SQRTR
; As SORT but rounds result.

; Routines begin here. Note that they must be separated
; and assembled separately, then combined in a .REL
; library using the Microsoft library manager.

; data areas for use in Divide and Square root functions

; Abort routine used by LDC2 and LDB2.
; Adjusts stack to return to caller’s caller

PUBLIC ABRT

ABRT: INX SP ; skip last return
address

INX SP ; return to caller’s caller
RET

END

; High Precision Integer Math overflow routine.
; Currently this routine performs an unconditional return
; to CP/M via a Warm Boot.

PUBLIC
T1.T2

DSEG

T1: DS 128
T2: DS 128

END

PUBLIC OVFLW

OVFLW: LXI D,OVFLWMSG
MVI C,9
CALL 5
JMP 0

OVFLWMSG:
db Odh.Oah
db 07, ‘Numeric Overflow, cannot complete
db calculations.’
db Odh.Oah ‘Returning to CP/M system
db level.’,Odh.Oah,*$’

END

; Loads register B with length indicator of value at (DE).
; Version LDB2 returns to caller’s caller on length zero.

PUBLIC
EXTRN

CSEG

LDB1.LDB2
ABRT

LDB1: LDAX

RAL
ORA
RAR
MOV
ORA
RET

D ; same as LDC1 but use
B and DE

A

B,A
A

LDB2: CALL
JZ
RET

END

LDB1 ; see LDC1
ABRT

; Increment and decrement length indicator of value at

; (HL)
; Sign is preserved. Program vectors to error message on overflow.

PUBLIC INRM,DCRM
EXTRN OVFLW

CSEG

INRM: MOV A.M
INR M
XRA M ; sign change (overflow)
RP ; nope.
JMP OVFLW

DCRM: MOV A.M
CPI 81H ; is it next to zero?
JZ LABB
DCR M
RZ ; return with zero set for

; zero
XRA M ; sign change?
RP
JMP OVFLW

LABB: MVI M.O ; set to absolute zero

; Load register C with length indicator of multi-value at

; (HL).
; Version LDC2 returns to caller’s caller on length zero.

PUBLIC LDC1.LDC2
EXTRN ABRT

CSEG

(continued on next page)
9Lifelines/The Software Magazine, Volume IV, Number 1

RET

END

MVI B,0
; high end of data
; get byte at high end

; save it
; length = length - 1

DAD B
MOV A,M
POP H
PUSH PSW
DCR M
POP PSW
RET

END

; simple arithmetic routines
; includes increment value by one, rotate value left one bit (*2)
; rotate value right (/2)

PUBLIC INCR,LEFT,RIGHT
EXTRN LDC1,LDC2,INRM,DCRM

CSEG

INCR: PUSH H
CALL LDC1 ;
JZ INCR2

INCR1: INX H

get length

INR M ; increment data
JNZ INCR3 ;
DCR C

overflow?

JNZ INCR1 ;
INCR2: INX H

loop to end

MVI M,1 ;
POP H

extend precision

CALL INRM ;
RET

INCR3: POP H
RET

add to length

LEFT: CALL LDC2 ;
PUSH H

LEFT1: INX H

get length

MOV A,M ;
RAL

get byte

MOV M,A ; put it back
DCR C ;
JNZ LEFT1

loop

JC INCR2 ; extend precision if

POP H
RET

RIGHT: CALL LDC2
MVI B,0

overflow off end

DAD B ;
MOV A,M
RAR

to high end

MOV M,A ; rotate right
MOV B,A ;

RIGHT1: DCX H
DCR C
JZ RIGHT2

save new top byte

MOV A,M ;
RAR
MOV M,A
JMP RIGHT1

handle rest of data

RIGHT2: DCR B ; was new top
• byte = zero?

RP ; no.
PUSH PSW ; yes, save carry

(= lost bit)
CALL DCRM ;
POP PSW
RET

END

decrement length

; Dequeue utilities.
; Push and Pop from high or low end of queue formed by multi-byte
; value at (HL).

PUBLIC
EXTRN

CSEG

PSHL,POPL,PSHH.POPH
LDC1.LDC2

PSHL: PUSHQ
MVI

PSW
B,0

; save byte

MOV
ORA

A,M
A

; length

MOV C,A ; toC
JZ PSHL2 ; was zero, no need to

; to shuffle data
DAD B ; high end of data

PSHL1: MOV A,M
INX
MOV

H
M,A

; shuffle. . . .

DCX
DCX

H
H

;up. . . .

DCR
JNZ

C
PSHL1

;data

PSHL2: INR M ; advance length
JZ
POP
INX

OVFLW
PSW
H

; oops, got too big.

MOV
DCX
RET

M,A
H

; put new byte away

POPL: MOV
ORA
RZ
MOV
PUSH
INX

A,M
A

C,A
H
H

; get length

; nothing to get.

MOV B,M ; get data byte
POPL1: INX H

MOV A,M ; shuffle. . . .
DCX H ;down. . . .
MOV
INX
DCR
JNZ
POP

M,A
H
C
POPL1
H

;data

DCR M ; length = length - 1
MOV
RET

A,B ; data removed to Acc.

PSHH: PUSH H
PUSH PSW ; save data byte and

length address
INR
JZ

M
OVFLW

; make it one longer

MOV
MVI

C,M
B,0

; length

DAD
POP

B
PSW

; to high end of data

MOV
POP
RET

M,A
H

; put data in line

POPH: MOV
ORA
RZ
MOV
PUSH

A,M
A

C.A
H

; length

; nothing to get

Lifelines/The Software Magazine, June 198310

PUBLIC ADD1.SUB1
EXTRN LDC1,LDC2,LDB1

CSEG
; Move value from (DE) to (HL)

PUBLIC
EXTRN

MOOV
LDB1

CSEG

MOOV: CALL LDB1 ; length of (DE)
MOV M,A
RZ ; was length = zero?
LDAX D ; no, move things
MOV M,A ; store proper length

; count
PUSH D
PUSH H ; save pointers

M00V1: INX D
INX H
LDAX D ; move. . . .
MOV M,A ; byte
DCR B
JNZ M00V1
POP H
POP D
RET

END

ADD1: CALL LDC2 ; length (HL)
PUSH D
PUSH H
CALL LDB1 ; length (DE)
SUB
XCHG

C ; compare lengths

JNC ADD2
CMA ; increase augend

length to = addend
ADC M
MOV M,A
XRA A ; clear acc.
ADD B ; length of (DE)
JZ ADD5 ; augend = zero, don’t

; add
ADD2: INX H

INX D
LDAX D ; get augend byte
ADC M ; add to addend
MOV M,A
DCR B
JZ ADD6 ; augend exhausted
DCR C
JNZ ADD2 ; continue addition

ADD3: INX H ; addend exhausted
MOV A,M
ADC C
MOV M,A
DCR B ; continue by adding

; zero to augend
JNZ ADD3
JNC ADD7 ; finished

ADD4: INC H ; overflow
MVI M,1 ; extend data
POP D
POP H
CALL
EXCHG
RET

INRM ; extend precision

ADD5: INX H
INX D
LDAX D
ADC B
MOV M,A

ADD6: DCR C ; add zero to addend
JNZ ADD5
JC ADD4 ; finished, check for

; overflows
ADD7: POP H

POP D
RET

SUB1: CALL LDC2
PUSH H
PUSH D
CALL LDB1 ; get lengths
SUB C ; compare
JNC
XCHG
CMA

SUB2

ADC M ; increase minuend
; length (preserve sign)

MOV M,A
XRA A
ADD B

; Compare two multi-byte values (DE) to (HL).
; Returns ZERO set if equal, CARRY set of (DE) >

PUBLIC PARE
EXTRN LDC1

CSEG

PARE: MOV A,M
RAL ; sign to carry
CMC ; set to true
RAR ; put it back
MOV B.A
LDAX D
RAL ; same to (DE)
CMC
RAR
CMP B ; compare lengths
RNZ ; lengths not equal
CALL LDC1 ; length of (HL)
PUSH H
PUSH D
MVI B,O
DAD B ; point to high byte

; (HL)
XCHG

PARE1: LDAX D
CMP M ; compare bytes
JNZ PARE2 ; not equal
DCX H
DCX D ; try next byte down
DCR C
JNZ PARE1

PARE2: POP D
POP H
RET

END

; Simple positive addition and subtraction,
; Addition adds (HL) to (DE), result to (DE).
; Subtraction subtracts (HL) from (DE), result to (DE).

(continued on next page)
11Lifelines/The Software Magazine, Volume IV, Number 1

SUB2:

SUB3:

SUB4:

SUB5:

SUB6:

SUB7:

SUB8:
SUB9:

SUB10:

SUB11:

EXCHG
JZ
INX
INX
LDAX
SBB
STAX
DCR
JZ
DCR
JNZ
INX
INX
MOV
SBB
STAX
DCR
JNZ
POP
PUSH

PUSH
MOV
RAL
CMC
RAR
MOV
ANI
MOV
STC
INX
MOV
CMA
ADC
MOV
DCR
JNZ
POP
JMP
INX
LDAX
SBB
STAX
DCR
JNZ
JC
POP
LDAX
CMP

JNZ
DCX
CALL
JNZ
XCHG
POP
RET

SUB3
H
D
D
M
D
C
SUB7
B
SUB2
H
D
A,B
M
D
C
SUB3
H
H

D
A.M

M.A
7FH
C,A

H
A.M

B
M.A
C
SUB5
D
SUB8
D
D
C
D
B
SUB6
SUB4
H
D
C

SUB11
D
DCRM
SUB9

H

; minuend = 0

; do the subtraction

; subtrahend exhausted

; minuend exhausted

; subtract zeros

; complement any
; negative result
; (2’scomp.)

; change sign

; length to C

; complement data

; any reduction in
; precision?
; nope.

; reduce precision

END

AD1: XRA A ; clear carry
JMP GPAS1

SB1: STC ; set carry
GPAS1: PUSH PSW

LDAX D
; save carry flag

XRA M
JM GPAS3

; differing signs?

POP PSW ; nope.
JC GPAS4 ; carry says subtract

GPAS2: CALL ADD1
RET

GPAS3: POP PSW

; else add.

JC GPAS2

GPAS4: CALL SUB1
RET

END

; differing signs, if
; subtract then really add

; general purpose multiply
; Multiplies (DE) by (HL), result to (DE).
; Handles both negative and positive values.
; work areas T1 & T2 are declared external data areas

PUBLIC MULT
EXTRN LDB2,MOOV,RIGHT,LEFT,ADD1
EXTRN T1,T2
CSEG

MULT: CALL LDB2
PUSH H
LDAX D
XRA M ; check signs
PUSH PSW
PUSH D
PUSH H
LXI H,T1

; save result

CALL MOOV
XRA A

; put multiplicand in T1

STAX D
POP D
LXI H,T2

; result to zero for start

CALL MOOV
POP D

MULTI: LX1 H,T2

; multiplier to T2

MOV A,M
ORA A

; start multiplication

JZ MULT3
CALL RIGHT
LXI H,T1

; finished.

JNC MULT2

CALL ADD1

; least significant bit NOT
set, don’t add

MULT2: CALL LEFT ;
JMP MULTI

; left shift multiplicand

MULT3: POP PSW ;
POP H

; recover signs

RP ;
LDAX D

; no problem

XRI 80H ;
STAX D
RET

; change sign of answer

END; general purpose add/subtract routine.
; Add and subtract positive or negative values.
; Adds (HL) to (DE), result to (DE).
; Subtracts (HL) from (DE), result to (DE).

PUBLIC AD1.SUB1
EXTRN ADD1.SUB1

CSEG

; general purpose divide, divide & round, and modulo routine
; Divides (DE) by (HL), result in (DE)
; Handles positive and negative values.
; Uses work areas T1 & T2

Lifelines/TheSoftware Magazine, June 198312

PUBLIC DIV, DIVM, DIVR
EXTRN LDC1,LDB1,MOOV,PSHL,PARE,SUB1
EXTRN INCR,RIGHT,LEFT
EXTRN T1.T2

CSEG

CALL LEFT ; left shift partial result
POP B
JMP DIV4 ; continue division

DIV7: POP D
POP PSW ; (DE) —> remainder
JM DIV11 ; modulo function
JNC DIV9 ; no rounding
PUSH PSW
CALL PARE ; partial divisor/2 < rem?
JC DIV8
JZ DIV8 ; no
LXI H,T2
CALL INCR ; yes, increment answer

DIV8: POP PSW
DIV9: XCHG

LXI D,T2
ANI 1
JZ DIVIO ; no change of sign
LDAX D
ORI 80H ; change sign
STAX D

DIVIO: CALL
XCHG

MOOV ; move result to (DE)

DIV11: XRA A
POP H
RET

RETN: POP PSW
STC ; carry set indicates no

; division
POP H
RET

END

; square root routine
; Extracts square root of (DE), result to (DE).
; Uses work areas T1 & T

PUBLIC SQRTR,SORT
EXTRN PSHL,ADD1PARE.SUB1,RIGHT,INCR,MOOV

EXTRN T1.T2

CSEG

SQRTR: ORA A ; clear carry for round

JMP SQRT1
SORT: STC ; set carry

SQRT1: PUSH PSW
LDAX D
ORA A
STC
JP SQRT2
POP B
RET ; cannot square root

; zero or negative

SQRT2: MVI C,1
LXI H,T2
MOV M.C ; initialize T2 = 1
INX H
MOV M,C
PUSH D
MOV D,A
MVI A.O
DCX H

SQRT3: CALL PSHL ; make T2>N(T2 must
; be a square number)

DCR D
JNZ SQRT3
LXI D,T1
STAX D ; clear T1

SQRT4: CALL ADD1 ; T1=T1+T2

DIVM: XRA A
ADI 80H ; clear carry, set sign
JMP DIV1

DIVR: XRA A
STC ; set carry, clear sign

JMP DIV1
DIV: XRA A ; clear carry, clear sign

DIV1: PUSH H
PUSH PSW ; save vector flags
LDAX D
XRA M ; sign differences
RLC
JNC DIV2 ; no sign differences
POP PSW
INR A ; sign difference in bit 0
PUSH PSW

DIV2: CALL LDC1 ; length of divisor
JZ RETN ; divisor = 0
CALL LDB1
SUB C
JM RETN ; divisor > dividend,

; can’t divide
PUSH D
INR A
MOV B,A
MOV C.A ; save length difference

PUSH B
LDAX D
ANI 7FH ; clear sign of dividend

STAX
XCHG

D

LXI H,T1
MOV A,M ; settoTI
ANI 7FH ; clear sign of partial

; divisor
MOV M,A
CALL MOOV ; move divisor
XRA A
STA T2 ; zeroT2
POP D

DIV3: CALL PSHL
DCR E
JNZ DIV3
MOV C,A
MOV B,D

DIV4: POP D ; division starts
PUSH D
PUSH B
LXI H,T1
CALL PARE ; partial dividend >=

; partial divisor?
JC DIV5 ; no
CALL SUB1 ; yes — subtract
LXI H,T2
CALL INCR ; increment quotient

DIV5: LXI H,T1
CALL RIGHT ; right shift partial divisor

POP B
DCR C ; loop count
JP DIV6
MVI C,7
DCR B
JM DIV7 ; end

DIV6: PUSH B
LXI H.T2

(continued on next page) 13
Lifelines/The Software Magazine, Volume IV, Number 1

XCHG
POP D
CALL PARE ; N> = T1?
PUSH PSW
CNC SUB1 ; yes, N = N - T1
POP PSW
PUSH D
XCHG
LXI H,T2
PUSH PSW
CNC ADD1 ; yes, T1=T1+T2
POP PSW
CC SUB1 ; no,T1=T1-T2
XCHG
CALL RIGHT ; T1=T1 /2
XCHG
CALL RIGHT
CALL RIGHT ; T2 = T2/4
MOV A,M
ORA A ; T2 = 0?
JNZ SQRT4 ; nope.
POP H
POP PSW
JC SQRT5 ; no round, finish up
CALL PARE ; N>T1?
JNC SQRT5 ; nope.
XCHG
CALL INCR ; round result in T1 up.
XCHG

SQRT5: CALL MOOV ; put result at (DE)
XCHG
ORA A ; clear carry for good

; result
RET

The advantage of this method is that the time for each
modulo reduction is actually reduced due to the decrease
in magnitude between the divisor and dividend when
compared to the original method. The major disadvan-
tage is the increase in storage space required due to the
need for storing the 'digits' of the BASE1 representation
and the increased complexity of the program.

POWER EQU 12
Listing 2

; BASE1 power
MAXDOL EQU 75

PUBLIC HPOUT2
EXTRN MOOV.DIVM.T2

HPOUT2: LDAX .D
ORA A ; check special case of

; zero
JNZ STAGEO
MVI A,‘O’
JMP CHROUT ; print a zero and return

STAGEO: XRA A
STA NEGFLG ; assume positive

; output
STA ANSWER
STA CHARCNT
MVI A,3
STA COMMACNT
LXI H.INDEXS
SHLD INDEX$PTR ; set up pointers
LXI H.TEMPSARRAY
SHLD TEMP$PTR
LXI H,ANSWER
SHLD ANSSPTR
LXI H,0
SHLD OUTCNT ; and output digit

; counter
LDAX D
ORA A ; check sign
JP STAGE1
MVI A;
STA NEGFLG

STAGE1: LXI H.BASE1
CALL DIFM ; begin conversion to

; BASE1
JC S12 ; carry set indicates

; end of conversion
LHLD TEMP$PTR ; pointer to temporary

; space
CALL MOOV ; move the remainder

; to the temporary array
PUSH
XCHG

D

LHLD INDEX$PTR
MOV M,E
INX H
MOV M,D ; save address of

; current digit’
INX H
SHLD
XCHG

INDEX$PTR

POP D ; recover remainder
; pointer

LDAX D ; get remainder length
MOV C,A
MVI B.0
DAD B
INX H
SHLD TEMP$PTR
SCHG
LXI D,T2
CALL MOOV ; put quotient in input

; value
XCHG

END

Alternate Output Conversion for
High Precision Math
This is an alternate output radix conversion routine for
use with the High Precision math routines. It performs
radix conversion using the multi-precision algorithm
presented in Knuth's 'Art of Computer Programming/
volume 2, pages 287-288.
In general, the algorithm differs from the present one in
the number of steps taken to reach the final decimal out-
put. In the present routine, the internal format integer
(binary) is repeatedly divided by 10 and the remainder is
output (modulo 10 division). The quotient is repeatedly
reduced in this manner until it becomes zero. The effect
upon the conversion time is illustrated by the benchmark
times for division. Timing tests indicate that division is
proportional to the magnitude of the DIFFERENCE in the
lengths of the divisor and dividend. This implies that the
present method is the slowest that could have been
selected.

The alternative method presented here performs the
conversion in two steps. The first step is reduction of the
input value by a large power of ten, which I shall call
BASE1. This produces a series of 'digits' representing the
input value in the BASE1. Each 'digit' of this new 'value' is
then further reduced modulo 10 to produce the final out-
put string. Note that this method may (and will) produce
zero remainders. These must be expanded into strings of
zeros equal to the power of ten which BASE1 is set to. I.e.:
If BASE1 = 10**12, then a zero remainder from the modulo
must be expanded into 12 zeros for the final output.

Lifelines/The Software Magazine, June 198314

CPI 0
JNZ S33
DCX H
DCX D ; skip leading zeros
JMP S34
CPI :-30H
JZ S35 ; also skip leading

; comma
MOV A,M
ADI O’ ; make ASCII
CALL CHROUT
LDA CHARCNT
INR A
STA CHARCNT
MOV A.M
CPI "30H ; was comma sent?
JNZ S32
LDA CHARCNT
CPI MAXCOL ; near end of line?
JC S32 ; nope.
CALL CRLF ; yep, start new line
MVI A,0
STA CHARCNT
DCX H
DCX D
MOV A.E
ORA D
JNZ S31 ; loop on digit count
MVI A,ODH
CALL CHROUT
MVI A.OAH ; follow with CR.LF
CALL CHROUT
RET

PUSH H
PUSH D
PUSH B
MOV E.A
MVI C,02
CALL 5
POP B
POP D
POP H
END

PUSH H
PUSH D
PUSH B
PUSH PSW
LHLD ANS$PTR ; answer buffer pointer
MOV M,A
INX H
LDA COMMACNT
DCR A ; put commas in place
STA COMMACNT
JNZ PUT1
MVI A,"30H
MOV M,A ; put a comma in
INX H
MVI A,3
STA COMMACNT ; new comma count
XCHG
LHLD OUTCNT ; count the comma
INX H
SHLD OUTCNT
EXCHG
SHLD ANS$PTR
LHLD OUTCNT
INX H ; count the digit
SHLD OUTCNT
POP PSW
POP B
POP D

(continued on next page)
15

JMP STAGE1 ; continue

; end of conversion, save last remainder S35:
S12: LHLD

CALL

XCHG
LHLD
MOV
INX
MOV

INX
MVI

INX
MVI

TEMP$PTR

MOOV

INDEX$PTR
M.E
H
M.D

H
M,0

H
M,0

; pointer to temporary
; space
; move the remainder
; to the temporary array

; save address of
; current digit’

; mark end of index
; pointers

S33:

S31:

; now have a representation of the input value to BASE1.
; Each digit’ is pointed to by the addresses in the array
; INDEX. We now begin converting the array values, starting
; with the oldest entry. (Least Significant).
STAGE2: LXI H.INDEXS

SHLD INDEXSPTR ; reset pointer
S21: LHLD INDEX$PTR

MOV E,M
INX H
MOV A,M ; get a pointer
ORA E ; zero address = done.
JZ STAGE3
MOV D,M
INX H
SHLD INDEXSPTR
LXI H.TEMP
CALL MOOV ; move it to work area
LDA TEMP
ORA A ; zero remainder?
JZ EXPAND ; yep, expandit

S22: LXI D.TEMP
LXI H.TEN
LDAX D
ORA A ; done?
JZ S21 ; yep, do another one.
CALL DIVM ; modulo 10
INX D
LDAX D ; get the remainder
DCX D
CALL PUTOUT ; save it
XCHG
LXI D,T2
CALL MOOV ; put the quotient back
XCHG
JMP S22

EXPAND: MVI B,POWER ; power of BASE1
EXP1: MVI A,0

CALL PUTOUT ; send zeros
DCR B ; for POWER times
JNZ EXP1 ; for POWER times
JMP S21

S32:

CRLF:

CHROUT:

PUTOUT:

; have now converted input into decimal valued digits.
; Now output them, placing commas every third digit.

STAGES:

S30:

S34:

LDA
ORA
JZ
CALL
LHLD
XCHG
LXI
DAD
DCX
MOV

NEGFLG
A
S30
CHROUT
OUTCNT

H,ANSWER
D
H
A,M

; check sign

; print negative

; output count in DE

; start at the other end

PUT1:

Lifelines/The Software Magazine, Volume IV, Number 1

POP H
RET

DSEG

; data

NEGFLG: DB 0
OUTCNT: DW 0
CHARCNT: DB 0
COMMACNT

DB 3
TEN: DB 1,10
BASE1: DB 5,00,10H,QA5H, ; 10t 12
INDEX$PTR:

DW INDEXS
TEMP$PTR:

DW TEMP$ARRAY
ANSSPTR: DW ANSWER
TEMP: DS 128
INDEXS: DS 128 ; room for 64 entries
TEMPSARRAY:

DS 512 ; guess
ANSWER: DS 255 ; should be enough

END
; This subroutine will accept decimal digits for use as input Listing 3
; values for the high precision arithmetic routines.

; The multi-byte value buffer for input is assumed to be pointed
; to be the DE register.

PUBLIC HPINPUT,INCNT
EXTRN MULT,AD1,DIV,OUTPUT

; equates

CPM EQU 0
BDOS EQU CPM + 5
CONIN EQU 1
CONOUT EQU 2
BS EQU 08
CR EQU ODH
LF EQU OAH

HPINPUT: XRA A
STA NEGFLG
STA INCNT ; zero counters
STAX D ; set value to zero

GETNUM: PUSH D
; initially
; save buffer pointer

GETNM1: MVI C,CONIN
CALL BDOS ; get a digit
CPI 03 ; return to CP/M on

JZ CPM
; control-c

CPI BS ; delete last digit if

JZ DELETE
; backspace

CPI CR ; goto new line without

JZ NEWLN
; disturbing value

CPI ; if minus, check for

JZ NEGVAL
; valid negative input

CPI ‘O’ ; now check for valid

JC DONE
; decimal digit

CPI *9’ + 1
JNC DONE
STA DSAVE ; save the digit
POP D ; recover pointer
LXI H.TEN
CALL MULT ; multiply by ten
LDA DSAVE ; recover digit
SUI 30H ; remove ASCII bias

ORA A
JZ GETNUM ; if zero no need to

STA DIGIT + 1
; addin

LXI H,DIGIT
CALL AD1 ; add to new digit
JMP GETNUM -

DELETE: POP D ; recover pointer
LDA INCNT
ORA A ; if digit count is zero,

JZ GETNUM
; don’t do anything

LXI H.TEN
CALL DIV ; remove last digit from

PUSH D
; value

MVI A, ‘ ’
CALL OUTPUT
MVI A,BS
CALL OUTPUT
LDA INCNT
DCR A ; decrement digit count
STA INCNT
JMP GETNUM

NEWLN: MVI A,CR
CALL OUTPUT
MVI A.LF
CALL OUTPUT ; print a cr,If
JMP GETNM1

NEGVAL: MOV B.A ; save character
LDA INCNT ; if digit count is zero,
ORA A ; then accept value as

JNZ DONE1
; negative.
; else assume digit

INR A
; terminates

STA NEGFLG ; set negative flag
JMP GETNM1

DONE1: MOV A,B
DONE: POP D

PUSH PSW ; save character
LDA NEGFLG
ORA A ; is value negative?
JZ DONE2 ; nope.
LDAX D
ORI 80H ; , set sign negative
STAX D

DONE2: POP PSW
RET

; data areas

DSEG

TEN: DB 1,10
DIGIT: DB 1,0
NEGFLG: DB 0
INCNT: DB 0
DSAVE: DB 0

END

Link of program TSTFAC using Microsoft’s L80 linker: Listing 4

AO>L80<cr> < — Invoke link program at CP/M

Link-80 3.37 08-May-80

command level

Copyright 1979,80 ©Microsoft

*/P:100,/D:1000 < — Set program at 0100H,

*B:TSTFAC < _

data at 1000H

Tell L80 what program to link
Data 1000 10CA
Program 0100 0130 < — L80 tells us where things went

and how big continued on page 29

Lifelines/The Software Magazine, June 198316

Programmer’s Notes On QuickcodeFeoture

by Marilyn Harper
This report is based on 4 or 5 months
of using AshtonTate's dBASE II (ver-
sion 2.23B) and Fox & Geller's Quick
code application generator (ver-
sion 2.0A), on a Radio Shack Model
II. I have read a number of tips and
notes on dBASE II, but little about
Quickcode. These are some of the
methods I have discovered to help
me get the best performance out of
this valuable programmer's tool.
Also included are notes on some of
the many invalid things I tried to do,
which should be avoided.

Customizing the Quickcode controls
with the C (Configure) Menu. The abili-
ty to configure the screen commands
to your own preferences is one of the
nice features of QC. Although QC's
program generation does about 75%
of the work for me, I do a lot of
editing of the results with Micro-
Pro's WordMaster. I reconfigured QC
to the nearest WM equivalent com-
mands, and found this improved the
ease of use of QC tremendously,
since I don't have to constantly
switch between two wildly different
command sets. When you buy QC,
configure it to match your favorite
editor as closely as possible. Then
your fingers will fly in Quickscreen
mode.
Using Text Files with Quickcode.
My interest in using ASCII text files
with Quickcode stems from the in-
ability of QC Version 2.0A to insert
blank lines into existing screen image
files. In designing complex data en-
try screens, one sometimes finds it
necessary to add data fields to ex-
isting screens. (This is especially true
when the end user isn't really sure at
first what he/she wants.) Quickcode
2.0A can delete lines from its screen
image file, but there's no way to push
existing lines down. Of course, you
can add new fields below the last old
line you used, but this may not be
what you want to do.

It occurred to me to try to read a QC
.SCR file, renamed to .ZIP, into the
Aston-Tate ZIP screen generator,
which can insert blank lines. But

alas, the .SCR file is in a non-ASCII
format which can't be read by either
ZIP or WordMaster.

Finally I found the solution to my
problem. As long as I am putting
together a simple screen, I use QC as
usual. But for a complicated screen
or one I think the user may want to
have modified, I use the following
procedure:

I type in the first-draft screen under
Wordmaster, as SCRNAME.TXT.
This file can be loaded into QC as a
text file. The only insoluble problem I
have encountered with a text file
source is that tab characters inserted
into the ASCII file are not processed
by QC to give the result one would
expect. It's simpler to avoid the Tab
key while in your editor. Also, you
may need to start your WM file 1 or 2
lines down, depending on whether
you use the Automatic Pilot feature
ofQC. (I don't.)

Parenthetically, the S menu of QC
allows you to turn off the Pilot, turn
off the status line, and set screen
length to 24 lines. By making these
adjustments, you could use all 24
lines in Quickscreen mode. Thus a
text file may be up to 24 lines long, as
stated in the QC manual. Under nor-
mal circumstances, you probably
won't want to use all 24 lines. For one
thing, dBASE version 2.23B now
preempts line 0. 1 tried to 'cheat' on a
crowded screen by adding my
screen-title string on line 0 with
WordMaster, but when I ran the pro-
gram, dBASE cleared a piece of that
string when the screen first came up.
A section of line 0 is used for run-
time messages like INSERT ON dur-
ing reading of @ GETs. Short titles
can still be squeezed onto line 0 pro-
vided you use the edges of the
screen.

Personally, I like the QC Line/Col-
umn monitor on the status line, and
never turn it off. It's especially handy
when I've predetermined a screen
layout on paper. It makes it very easy
to be sure I type Quickscreen fields to
match the paper layout.

Back to text files: with QC using line
0, text entered on line 1 of a text file
will be overlaid by the status line.
This means you won't see it in
Quickscreen mode, except briefly
when you first enter this screen
mode. However, any characters on
the top line of a WM file show up in
an @ SAY on line 0 in the programs
QC writes for you. This is true even if
the S menu says the top margin is
screen line 1!

QC behaves strangely with text files
below screen line 20 unless you ex-
plicitly set the bottom margin lower
than this. You'll be able to see any
characters on lines 21-23, but you
can't move the cursor there.
Using QC with a text file, I now
have a quick-and-dirty applications
screen which the user can begin to
try out. If I am later asked to modify
the screen, it is very easy to do so. If I
need to add fields to the screen, or
just juggle the existing fields into a
new format, I can use the full editing
capabilities of WordMaster in my
SCRNAME.TXT file. If for some
reason I want to keep the original
screen image and programs, named
in this example SCRNAME.TYP, I
can simply REName or PIP a new-
named copy of the ASCII screen im-
age before editing and loading it into
QC for generation of a new set of
programs.
The ASCII file I create under WM can
also be used as program documenta-
tion, similar to QC's .PRN file. The
.PRN file prints as hardcopy show-
ing your labels and has colons to
mark the data fields. Printing my file
.TXT shows the labels and the
variable name assigned to each field.
The end-of-field markers (usually >)
will be printed if you have typed
them into your text file.

Incidentally, you can get some
bizarre effects if you don't follow the
QC manual's instructions for text
files (brief though these are). You're
supposed to select T from the main
menu, and then get a prompt for the
filename. If the text file is

(continued on next page) 17Lifelines/The Software Magazine, Volume IV, Number 1

NAME.TXT, you should only enter
NAME in response to the prompt.
But let's say that you select the T main
menu option, and then forget and
type in the full filename, NAME.TXT,
when prompted. QC will cheerfully
load your ASCII file under the full
name. You now have a major pro-
blem which you won't know about
until you key for program
generation.

Quickcode makes all sorts of con-
vincing noises on the disk while it
tells you it has SUCCESSFUL-
LY CREATED NAME.TXT.IO,
NAME.TXT.FAU, etc. Of
course, you won't find any
such files in the directory if
you look for them later. You
will also find that your origi-
nal NAME.TXT file has been zapped
by something that QC has written
over it. This new file appears to be
'NAME.TXT.PRN,' but it unfortun-
ately shows up on the disk under the
name NAME.TXT.
Another thing to watch out for is

forgetting that NAME.TXT is an
ASCII file. If you try to load it under
the menu selection O (OLD screen),
which QC reserves for its own .SCR
file format, you'll probably bomb out
of QC with a fatal file error. Some or
all of QC is obviously written in
Digital Reseach's PL/I-80, so if you've
ever used that language, you'll pro-
bably recognize some of the error
messages. When I tried to load files
generated by ZIP into QC as OLD
screens, I managed to achieve error
conditions so drastic they required
cycling the power to get the system
unlocked.
Tricking Quickcode into doing the
screen My Way. I want my data
screens to look good. I get a lot of
looks' for free with dBASE on the
TRS-80 Model II, because with IN-
TENSITY on, all of the @ SAY's are
presented in reverse video. This
makes a nice, no-effort-on-my-part
separation between the labels,
screen titles, etc., and the @ GET
data fields.
Quickcode doesn't produce precisely
the screen I want without a few
tricks on my part. I want every
character string which will appear in
reverse video to have an extra blank
RV character at the beginning and
end of the string. This makes the
edge characters, especially if they're
upper-case letters, much easier to

mode, even when they're shorter
than the allowed 11 spaces. I edit
them into the .FAU program with
WbrdMaster. The .FAU program con-
sists of string assignments to
memory variables, as in:
STORE ' ' TO MDLR:ADDR
It's a snap to type my default string
into the space between the single
quotes.
To lengthen a string beyond 79
spaces, just move the cursor inside

the quotes, turn insert on,
and count strikes on the
space bar up to the
length you want. When
you run the screen pro-
gram, dBASE glibly
'wraps' the long field

down to the next line, as needed,
and places the end-of-field marker
in the right place. If you use long
labels or titles, QC chops them
up into 20-character strings (or
less). This can create a messy-
looking program. I use WM to edit
these fragments back together. The
program listing not only looks
better, but is shorter and more
readable.
Dealing with short data fields. If you
ever have to build a QC screen with
data fields which are shorter than the
variable name you planned to assign
to the field, you may be in for some
surprises. Let me illustrate with an
example.
Say you're in Quickscreen mode and
you type the following:
Labell ;VAR1>
Label2 ;VAR2>
but you want the VARI field to be on-
ly 1 character in size. You realize you
can't put the > end-of-field marker
directly where it should be, so
perhaps you go into fields mode and
change the LEN column from 5 to 1.
QC will tell you the screen has been
adjusted. But now when you go back
to screen mode, you will see that QC
has done what you intuitively avoid-
ed doing:

Labell ;>VAR1
Label2 ;MVAR2>
If you freak out and immediately try
to return to fields mode, your system
will probably lock up and require a
cold restart. QC has in effect deleted
the variable name for the MVAR1
field. This condition is fatal if you

QLong long long labelQ ;VAR:NUM1 > QNext label Q ;VAR:NUM2 >
QQQQQQQQShorter labelQ ;VAR:NUM3 > QQQLabelQ ;VAR:NUM4 >
QQQQQQQQQQQQQLabelQ ;VAR:NUM5 > QThis labelQ ;VAR:NUM6 >

read. I also want to avoid unpleasant
stair-case effects, which are hard
on the eyes when they're highlighted
in reverse video. Although I always
lined up the data fields vertically, my
earliest QC screens looked like
patch-work quilts of light and
darkness.
Here is an example of how I would
enter several lines in Quick
screen mode (or with Wordmaster) to
get QC to generate the programs my
way:

Q** Screen Title **Q

All those Q's are incorporated into
the label strings of the programs
which QC writes for me. I can then
load SCRNAME.IO, for example, in-
to WbrdMaster, and make a global
substitution of all Q's to blanks
without changing the position of the
string delimiters. (I chose 'Q'
because it rarely appears in the
words of my labels, but if it did, of
course I'd edit that word back to the
correct spelling.) When the dBASE
program is executed, the six labels
above will appear as two high-
lighted, rectangular blocks. There
are no rough, irregular edges at all,
and QC did practically all of the
work.
Parenthetically, if you want to use

the apostrophe in a string, you may
find that dBASE will only SAY the
string up to that point. If the line of
code as produced by QC is:
@ 10,00 SAY ' Customer's Name '

just edit this to:
@ 10,00 SAY " Customer's Name "

to get the desired string to print.
Dealing with long fields, labels, and
titles. QC won't allow you to set up a
character field longer than 79 spaces.
dBASE itself will accept up to 254. If
you need a character field longer
than 79, set up the field in Quick-
screen and leave one or two lines im-
mediately below it blank. Let QC
assign its maximum length to the
field. After program generation, you
can edit the .FAU program, as
described below, to achieve the
longer length you want.

I never bother to put default values
in character variables via fields

Lifelines/The Software Magazine, June 198318

sarily losing any of the editing done
up to that point.

Brief notes on the dBASE editor. dBASE
version 2.23B has a built-in "full-
screen" editor, invoked by MODIFY
COMMAND filename.typ. The chief
advantage of this editor would ap-
pear to be that you can go in quickly
to change a dBASE program, without
having to exit dBASE. There are only
a few commands, and since they are
more or less similar to WordStar-
WordMaster, they will seem 'natural'
to many CP/M users.

I rarely use this editor myself because
it lacks features I must have for effi-
cient editing. Fbr one thing, this
turns out to be one of the dreaded
Full-Screen Line-Editors, rather than
a true full-screen editor. There are no
provisions for fast cursor movements
like MicroPro's word-forward and
word-back. Global searchs and
substitutions are not possible. For
me, this editor's fatal flaw is the in-
ability to support lines longer than 80
columns. Programs generated under
QC which use long character fields
cannot be edited in dDASE.

However, the dBASE editor does
have one outstanding ability which
merits comment. It won't let you load
a file if there's no room for the .BAK
file on the disk. If you've ever lost
editing under WM because you had
filled up disk A, and had no disk
already logged on to drive B, you can
appreciate the usefulness of this
feature.

Actually, with dBASE you may be
more likely to fill up the directory
than the disk per se. Since dBASE
doesn't have subroutines, you often
find that an application requires
more separate programs than you
might otherwise use. This is true
even if you use dUTIL or other means
to merge small programs. (I use WM
to 'yank' into .ADD the otherwise ex-
ternal files, such as .FAU, .IO, etc.
This results in less disk access time
when the program is run, as well as
reducing 'directory clutter'.) Even if
there's room on disk for the 2K
(double-density format minimum
sized) .BAK file, dBASE will tell you
DISK FULL if the directory is full. In
either case, since you can't load
another file, you can never lose any
editing time. Q

message at the bottom of the screen
that the input is too long.

The only sensible remedy with this
version of QC is to edit the PICTURE
into the GET statement yourself.
Find your integer GETS in .IO
and change:

@02,30 GET MINT1 to:
@ 02,30 GET MINH PICTURE

'999999'

A similar problem occurs because,
QC fails to generate an 'X' format for
Logical variables in SAY statements.
You may have to hand-edit QC's code
from:

@12,10 SAY MLOG1 to:
@ 12,10 SAY MLOG1 USING 'X'

in order to get this statement to work
properly.

A second problem with QC integers
occurs if you try to index one of your
.DBF files solely, or first, on an in-
teger field. (This means that while in
fields mode, you entered a 0 in the
File column for an integer variable.)
The QC program .GET, in its 'Search"
section, will include statements like
these:

STORE STR(INT1, 6,0) TO MQ:KEY
FIND &MQ:KEY

Because the FIND command works
only with a character string, the
integer-to-string function STR is us-
ed to convert INTI, before a search of
the index file is executed. Unfor-
tunately, the code written by QC
doesn't work in this case. An index
file with the first or only key an in-
teger field is not correctly searched
by the statements shown above. The
message NOT FOUND will appear at
the bottom on the run-time screen.
To use an integer key, you must
hand-edit quotation marks into the
FIND statement: FIND '&MQ:KEY'

A final note on Quickcode: Because it is
possible to commit a fatal faux pas
when going from Quickscreen mode
to fields mode, I routinely execute a
save-to-disk operation before I enter
fields mode. I don't screw up nearly
as often these days as I did when first
learning Quickcode, but it only takes
a few seconds to write my current
screen to disk. At least I can load that
same screen again, after a resort to
Reset if something unexpectedly
goes wrong. This gives me a chance
to look for the brand new stupid
mistake I've made, withouj neces-

enter fields mode. Similarly, entering
fields mode with a semicolon any-
where on the screen followed by a
blank space, i.e. no valid field name,
locks up the Model II, at any rate,
faster than your sister.

The trick with short fields is to avoid
using the end-of-field marker at all.
Type in the full field name you want,
and let QC assign the default field
width of the remaining space to the
end of that line. Then you can safely
go into fields mode and change the
field width from 70 or whatever to 1.
This 'seals off' a short field without
altering what you see on the screen
in Quickscreen mode.

When placing several short fields on
the same line, I've found it to be a
good idea to 'seal off' the left-most
field this way, before I type in the
label of the next field. I've had some
problems of the following sort:

Labell ;M1 Label2 ;M2 > Label3;M3>

If you type the line exactly as it ap-
pears above, and then go to fields
mode, QC sees only two fields. The
first is named 'Ml Label', and is 18
chars in length, but is flagged with an
'illegal char' code in the ER column.
The second is M3, which is 33 chars
in length. This problem arises only
when you want to use a very short
field, followed hard by the label of
the next field. You can't close off Ml
with the '>' if the field is destined to
be shorter than its variable name. But
in the case above, 'Label2' falls with-
in the 9-character space QC allots to
the first field. None of these dif-
ficulties arise if you simply type in
Labell ;M1 and 'seal off' this short
field in fields mode, then return to
Quickscreen mode to type in Label2.

Using Integer Data. A nice feature of
QC is the 'extra' data types such as
Telephone and Date. These are
handled automatically by generation
of PICTURES:

@ 05,10 SAY "Today's Date " GET
MDATE PICTURE '99/99/99'

Oddly, QC produces no PICTURE
for an integer field. This results in all
integer GETs having an 11-digit field
presented on the run-time screen.
This is irritating when you have
taken the trouble with QC to set field
INTI# to a length of, say, 6. Doubly ir-
ritating is having the run-time field
actually accept up to 11 digits, and
then inform you in a wordy error

19
Lifelines/The Software Magazine, Volume IV, Number 1

YOU SPENT $4,000 ON
A PERSONAL CdMPUTER.

No matter what you need
it to do.

More importantly,
LIST contains the LIST
Software Locator™ a com-
prehensive guide to over
3,000 personal computer
programs—conveniently
indexed by application,
industry, operating system
and hardware. You’ll find
detailed descriptions of
applications software that
pertains specifically to the
type of business you’re in.
And the type of needs
you have.

LIST is sold at leading
computer stores and book-
stores. Or, you can phone
our toll-free number (1-800-
821-7700, Ext. 1110) or
send in the coupon below,
and receive a copy by mail.
The price, exclusive of
postage and handling, is
$12.50.

Which, when you think
about it, is a pretty small
price to pay for something
that can maximize a much
larger investment.

LIST is published by
Redgate Publishing Company,
an affiliate ofE.F. Hutton.

FOR ANOTHER S12.50,
YOU CAN GET

YOUR MONEY’S WORTH.
And the software pro-

grams available to business
and professional people
number in the thousands.

But where do you go
to find them?

Today’s personal com-
puters have an extraordi-
nary range of capabilities.

Fora
variety of
reasons,
however,
many busi-
ness people «r

are unaware of just how
much their computers are
capable of.

As a result, they aren’t
realizing the full potential of
their investment.
THE KEY TO GREATER

PRODUCTIVITY IN A
WORD: SOFTWARE.

Computers do the
work. Software does the
thinking.

Expanding the amount
of work a personal com-
puter can do is merely a
matter, then, of gaining
access to a broader array
of software.
© 1983 Redgate Publishing Company.

All rights reserved.

THE KEY TO SOFTWARE
IN A WORD: LIST
LIST is the first pub-

lication that
puts software
first.

It contains
articles by some
of the most
respected
names in the
computer field.
Written to help
you get the
most out of your
personal com-
puter. No matter I
what brand it is. I

J" I’D LIKE TO GET THE MOST OUT OF - 1

MY PERSONAL COMPUTER.
| Please send me ---------- copies of LIST at $12. 50 a copy plus $2. 00
■ each for postage and handling. (Tax will be added where applicable.)
■ ---------------- — VISA MasterCard (Interbank No)

Card No --- Exp. Date ___

Signature ---

Print Name __

Address __

Cit y---------------------------------- State ----------- Zip ----------- I
Send to LIST, Redgate Publishing Co. , 3407 Ocean
Drive, Vero Beach, FL 32960. ■
Or phone, toll-free: 1 800821-7700 Ext. 1110

LIST I
The Software Resource Book J
For Personal Computer Users

Lifelines/The Software Magazine, June 198320

PL/I-You're Go ing To Love ItFeature

by Bruce H. Hunter

PL/I is a language that you seldom hear about nowadays,
particularly in the world of micros. It is one of the most
powerful, expressive computer languages ever written,
but it is hardly the most popular. In fact, for a language
this versatile, and with the incredible programming
potential it offers, it is amazing how many people have
avoided learning it! There are a lot of reasons for this.

ing with a structured language, but few books introduce
these concepts to the novice. However, for those who
persevere, the rewards are great. The combination of self-
documenting descriptors, tight structure, and the most
powerful set of commands, operators and functions this
side of anywhere makes PL/I the exceptional, self-
documenting language that it is.

For all of these reasons, and because of my love for the
language, I have written a book entitled "PL/I From the
Top Down." I have agreed to have Lifelines publish this
book (a chapter at a time) over the next year, starting with
this article. The scope of this book is PL/I Subset G. The
subject will be dealt with informally, but from a practical
point of view: the main aim is to get people up and runn-
ing in PL/I. The specific purpose of this book is to provide
an introduction to this language tailored for those who
have never brought up PL/I or any other "fully grown"
language. For further, more detailed study, I will refer you
to some excellent texts already available on the full set.
However, this book should get you off to a running start,
and hopefully it will provide those who are interested
with enough of a basic knowledge of the language to
knowledgeably evaluate it and compare it with other
languages. The ANSI definition of the language will be
covered, and the many advantages of this much maligned
language will be explored in detail. Compilers that are
available for micros and minis will be discussed and com-
pared with each other, with the full set of Subset G, and
with the full set of PL/I itself. Throughout the book,
parallel programming examples from several other
languages will be used as a guide to the understanding of
the PL/I language.

There is another reason I feel a need for a book like this. As
you know, Ada is right around the corner, and with the
Department of Defense sponsoring this language, it will
behoove many people to become acquainted with Ada if
only for the money it will pay them to do so. Soon, know-
ing Ada will mean never having to know unemployment.
My friend Dr. William Hogan calls Ada "Pascal with a
thyroid problem." Learning Pascal is a good way to be
prepared for learning Ada, but Ada is going to be a gar-
gantuan language, requiring a great deal of sophisticated
knowledge about programming. Therefore, learning PL/I
would also be an additional way to prepare for Ada, as
PL/I is one of the the most sophisticated languages writ-
ten to date. For those knowing Pascal and PL/I, learning
Ada will be a relative "piece of cake." Also, Pascal, Ada and
PL/I have the same "roots": Algol. It's food for thought.

The first chapter is intended to get the would-be PL/I pro-
grammer running rudimentary programs as quickly as
possible. The only way to really learn a language is to dive
right in and experience what it is like to program in it. My
book takes a spiral approach in teaching this language, so
the first chapter will simply take a superficial glance at the
way PL/I handles the basic elements used in program-

continued on next page) 21

One of the reasons is that there are so few implementa-
tions for micros. I am aware of only one for 8 bit machines
running under CP/M, and that is Digital Research's
PL/I-80. Priced at $500, it is nevertheless a tremendous
software bargain. On the other hand, at that price it is
hardly an "impulse item" one casually picks up to learn
"for fun."

Another reason is that PL/I was originally written for
behemoth mainframes, and mainframes are available to
only a small percentage of people interested in computers
and computer languages today. The full set of PL/I would
never fit on a micro or even a mini, because storage was
never a consideration in the creation of this language; but
there are the inevitable subsets, and DRI's implementa-
tion, for example, is a subset of PL/I Subset G. It is a dif-
ficult task to fit something so large into a limited space,
however, and that may be why there are only a few im-
plementations for minis and micros. With so few im-
plementations available, many people are simply
unaware that PL/I exists.

Another reason a lot of people don't eagerly pursue the
learning of PL/I is that it has a formidable reputation. It is
a huge language, so there is a lot to learn. It is not a friend-
ly language like BASIC or even Pascal; when you deal
with PL/I you deal with it on its formal terms! Also, it is
not a very easy language to learn, partly because of its
tremendous size. There are many, many rules of structure
and syntax, and you must know them if you even hope to
bring it up and print 'hello'. There are no books available
on PL/I Subset G, so the only learning material you will
find are some books on the full set of PL/I, which involves
a tremendous amount of frustration since you are forced
to wade through pages of technical text only to find that
what you just read is not implemented in PL/I Subset G,
or in any subset of Subset G that your compiler covers.

Yet another reason many people don't learn PL/I easily is
that the majority of people newly exposed to PL/I,
perhaps just out of BASIC or FORTRAN, have not yet had
to deal with a structured language. Today we use Pascal as
the "typical" structured language example, but PL/I is an
ARCHETYPAL structured language since it is capable of
true top-down development. Pascal has to define all func-
tions and procedures before the program "main" en-
counters them, but PL/I can use true top-down structured
programming by putting the main block of the program
first, while secondary procedures can be placed in
whatever order is clearest to the understanding of the pro-
gram. There are many complex concepts involved in deal-
Lifelines/The Software Magazine, Volume IV, Number 1

ming, such as input/output, loops, declarations, etc. They
will be dealt with in more detail as the book progresses.
Some of you may have access to a PL/I compiler, and it will
facilitate your learning if you use it in conjunction with
this article, but you don't have to have one to understand
what follows.
The PL/I compiler used for the writing of the programs in
this chapter is DRI's PL/I-80.

PL/I

FROM THE TOP DOWN

by Bruce H. Hunter

(c) 1983

All rights reserved

CHAPTER ONE — GETTING
IT UP

Notice the abbreviations. You can use proc for procedure.
Notice the white space. PL/I is a free form language, so
feel free to use as much white space as you want for pro-
gram clarity and readability. The "put list ('HI');" will
print to the screen the brief salutation. Notice the single
quotes around HI. Before getting in much deeper, let's
see how to get this little program to run. The program
is written with a text editor. To play it safe, put a few car-
riage returns at the end of the program because your com-
piler must be able to read one line beyond the last line
of code. It should be saved with the file extension .PLI
(such as HI.PLI, or B:HI.PLI, if your are saving it on the
B drive). The PL/I compiler will be expecting to see the
PLI file extension, and it will not compile anything that
doesn't have it. (NOTE: If your are saving the program
files to your B drive, type B: directly in front of the file
name, but after any command.)
To invoke the compiler type PLI HI, or PLI B:HI if you sav-
ed it on the B drive. You do not type the .PLI file extension
when the compiler is invoked.

A> PLI HI

The compiler will come up, announce itself with the revi-
sion number and proceed to print "NO ERRORS IN PASS
1, NO ERRORS IN PASS 2" followed by some cryptic
statistics. The compiler will have created an intermediate
code program called HLREL. The relocatable code is in
essence an assembly program which will be linked by
LINK. (PL/I's ability to create macros lies in its ability to
make this RELocatable code, and the linker's ability to link
it to and with almost anything, providing some
housekeeping has been done.) Now type

A>LINK HI

This should start a flurry of disk activity. The linker will
load, and being ready to link the grandfather of all pro-
grams, if need be, it will use disk storage instead of high
speed storage to create the end program. The disk
read/write heads will pop in and out, and in a minute or
so, with a belch of cryptic hexadecimal stats, the linker will
announce it has linked the program. Now there is a pro-
gram HI.COM out on disk. The COM tells you it is a com-
mand program, which means all it needs to "run" is to
have its file name entered. No extension is needed. It does
not need a "run" command, nor does it need any libraries
loaded. All the library functions have miraculously been
linked with no effort on your part.
Before you run this program, do a DiRectory of the drive
you saved it on. You should see HI.PLI, HLREL,
HI.COM, and you may see HI.SYM which is the symbol
file. Now do a STAT HL* and it will tell it all by showing
something like this:

Your First PL/I Program
Few people have the patience to just sit down for a few
months and read stacks of documentation and books on a
language before writing an actual program. We all want to
open the book, read a few pages and start an elementary
program as soon as possible to get a feel for the language.
PL/I is a structured language. This is the first thing to bear
in mind when approaching it, and there are several rules
of structure to learn. Any PL/I program is a procedure
(which in turn can consist of more procedures and blocks,
all nested within the main procedure). So

Program:
procedure options (main);
end program;

is a program. It doesn't do anything, but it is a program.
The program label "Program:" is the title or label, which
all PL/I programs must have. All labels are followed by a
colon. For now, everything else will be followed by a
semicolon, including the last line of code. PL/I is very
picky about punctuation, so note all punctuation marks
carefully. The "procedure options (main);" tells the com-
piler that this is the main procedure. (It is not a macro, but
it is a stand alone program. It may also call other programs
and be linked with macros.) The "end program;" ter-
minates the procedure, which in this case is the entire pro-
gram. It is only necessary to type "end"; as that will end
the procedure, but this is a very bad programming prac-
tice. Whenever you end a procedure, type "end" and then
type in the label for that procedure. It would be almost in-
excusable not to, because it contributes to program clarity,
a must as all of you who have to maintain someone else's
code know so well.

Now lets make it do something:
Hi:

proc options (main);
put list ('HI');
end hi;

Rec Bytes Ext Asc
48 6K 1 R/W B:HI.COM
1 2K 1 R/W B:HI.PLI
2 2K 1 R/WB:HI.REL
1 2K 1 R/WB:HLSYM

Now you are ready to run by just typing:
A>HI

That is all it takes, and the little program will prompt:
HI

Lifelines/The Software Magazine, June 198322

% REPLACE CLEAR by 'tL';
and when you move the program to another machine, you
find out, as it is almost inevitable you will, that tL won't do
what you wanted it to do. In order to get the program to
run on the new machine, you have to change every tL
with whatever will work. You only have to change it in one
place in the program if you have used the % REPLACE
statement! So now the program reads:

hi:
proc options (main);

% replace
CLEAR by ztE;

put list (CLEAR);
put list ('HI');
end hi;

Save this, compile and link it again as you did before, and
run it. Now the screen has been cleared, and the brief but
friendly message has been printed. The control character
did its job.

You're handling strings already! Unfortunately, all the
garbage you had previously on the screen is still there. It
would have been nice to have cleared it off the screen. In-
terpreter BASIC would have done it with CLS. On the lit-
tle micros like the TRS-80, BASIC is ROMmed into your
machine and has control of the video map. In fact, each
terminal or computer has its own code or escape sequence
to clear its screen. You can usually get around this pro-
grammatically, but not always. Most books don't even
bother to mention this little difficulty, or they sort of skim
over it quickly to minimize it. I'm not going to do that.
There are lots of "inconveniences" like this when dealing
with computers because there are so few universal stan-
dards for the industry yet. So let's do it the hard way, and
you'll learn more about some of the differences you'll en-
counter between computers in the process. My ADDS ter-
minal wants to see a page command (form feed) or control
L. (PL/I has the ability to imbed control characters into the
output stream, not entirely dissimilar to BASIC's CHR$().
The caret "t" in PL/I masks the high order nibble (four
bits) of the character following it making it a control
character.) A few control characters for my terminal are:

tj line feed Oah
tl tab 09h
IL form feed (page) Och
IM carriage return Odh
tG bell 07h

The "put" statement does not work exactly like BASIC's
"print". "Print" statements assume a carriage return/line
feed at the end of the line.

print "hot"
print "dog"

will result in

hot
dog

On the other hand,

put list ('hot ');
put list (' dog');

will result in

hot dog

BASIC automatically gives a carriage return/line feed pair
with each print statement. PL/I takes nothing for granted
and wants to be told to line feed.
* * *

Now for a look at skip and the tab.

put skip list ('hot dog');
Skip will have the system do a line feed before printing. It
"skips" one line. To get a line feed after printing would
take

put list ('hot dogtM');

The embedded "control M" (carriage return) will cause
the line to skip after the characters in the line have been
printed. Do remember that it is the convention in PL/I to
line feed BEFORE printing, however. Rely on skip, not
tM.

If you want to skip several lines before printing your
message, multiple skips are easy enough with a repeti-
tion factor after the skip. To put the string in the middle of
the screen, use tl (the tab).

put skip (12) list ('tltltl HI');
(continued on next page) 23

Remembering that almost all terminals are different, you
will have to look up the control sequences for yours. My
ADDS uses a control L (tL) to clear the screen:

put list ('IL');

The equivalent statement in BASIC would be

print chr$ (12)

or in Pascal

write (chr(12));

The biggest difference in the command lines is that
BASIC's "print" prints to the screen only. PL/I's "put" will
work with any form of stream (sequential) file output (to a
disk file, to the printer, to the console, etc.). PL/I and
Pascal are file oriented, and BASIC is not.
* * *

Let's discuss another concept of PL/I: precompiler com-
mands. (A precompiler command will cause the compiler
on its parsing pass to do a substitution. If a code fragment
called MINIPROG.PLI exists, it will be added to the pro-
gram automatically by the command:

% INCLUDE MINIPROG.PLL

As programs get larger, this becomes an invaluable time
saver, not to mention saving typos. BASIC also has an
identical function called % INCLUDE which works the
same way.)

The precompiler command % REPLACE substitutes one
group of number or characters for another.

% REPLACE TRUE BY 1;
will do exactly what it says. Every occurence of TRUE will
have the number 1 as its value. The immediate value of
this may not be apparent, but for the sake of probability,
say you have chosen to use
Lifelines/The Software Magazine, Volume IV, Number 1

This will cause the string to be put on the 12th
line and tab 3 times to somewhere around the
middle of the screen.

Here it all is in this first little program.
hi:

proc options (main);
%replace

CLEAR by 'tL';
put list (CLEAR);
put skip (12) list ftltltl HI');
end hi;

Variables and Declarations
For those of you who are used to BASIC Interpreters, a
compiler will be a different experience. PL/I is a compiler
and a good one. It can't second guess what you want for
variables and is rather meticulous about its housekeep-
ing. It has few defaults and they tend to work "down," not
up, going in favor of the most efficient, not convenient, so
all variables have to be DECLARED.
PL/I has its own dialect as well. Strings are CHARacter. In-
tegers are FIXED binary. Don't let binary fool you; it refers
to the internal representation of the number, but in in-
teger. Real numbers are FLOAT binary and may be
decimal and/or exponential. DECIMAL is Binary Coded
Decimal, the bookeeper's friend. BIT is bit. FILE is used to
declare file names. There is more, but it will keep. Declara-
tions look something like this:

del
name char (32) var,
dollars decimal,
(number, nbr) fixed,
pi float;

or

declare
name character (32) varying,
dollars fixed decimal,
(number, nbr) fixed binary,
pi float binary;

for the more verbose. Note that PL/I loves abbreviations. It
can be "C" like and cryptic, if you wish, but except for us-
ing available abbreviations, it's best to strive to keep it as
clear as possible. In fact, PL/I can and should be elegantly
clear and self-documenting. Variable names can be up to
31 characters in length, and there is no excuse for not hav-
ing them be self-descriptive.
Note the varying attribute with the char declaration
(name char (32) varying,). It is saying name is a character
string of up to 32 characters, but it will accept a lot less.
Care must be exercised in the declaration and use of
variables. If a numeric is expected and an alpha is input in-
stead, the program will crash. (It can be avoided.) If in-
teger is expected and real is given, it will be truncated.

BASIC has its own declarations of sorts. It does not use the
"declare" statement, but they are declarations just the
same. For example, the following form is used in
CBASIC-80:

string name$

real dollars
integer number, nbr

You will find something similar in Pascal:
var

name : string;
dollars : real ;
nbr : integer;

The ability to declare variables lets the compiler allocate
memory before the program is run. Storage allocated to a
block is released or freed when the block is exited (unless
it is declared static); therefore, it is much more memory ef-
ficient. Variables remain local to the declaring block and
the same variable name can be used in any block where it
is local. To those of you that have worked on a BASIC in-
stallation with only two character variable names, or in
FORTRAN with six, and all of them global, you can cer-
tainly appreciate this feature.

INPUT
A lot of programming involves input. Examine the follow-
ing program which contains a simple input statement.

instring:
proc options (main);

% replace
CLEAR by 'tL';

del
name char (128) var;

put list (CLEAR);
put skip (6) list ('enter your name :');
get list (name);
put skip (2) list ('your name is ', name);

end instring;
The get list is telling the system that it is waiting for an in-
put. It works exactly Ike BASIC's "input" statement (input
name$).
Why not simply get instead of get list? PL/I needs to know
if the input is "edited" or "listed" (free form). PL/I dif-
ferentiates between the two, and this will be explored fur-
ther in detail.
For now, just be aware that input falls into these two
categories.

get edit (name) (a(16));
This will get a name 16 characters long. If it isn't 16
characters long, it will be padded with blanks until it is.

LOOPS
Loops are another necessary element in programming.
An elementary example of a loop in PL/I is the do while in
the following example.

instring:
proc options (main);

% replace
TRUE by Tb,
CLEAR by 'tL';

del
name char (128) var;

put list (CLEAR);
do while (TRUE);

put skip (2) list ('enter your

Lifelines/The Software Magazine, June 198324

continued from page 27name :');
get list (name);
put list ('your name is', name);
end; /*do while */

end instring;

When this is compiled and linked, something happens
with which someone new to PL/I should familiarize
himself. You enter a first name and it takes it, but enter a
full name and it reads it up to the space and refuses to read
any further. What happened? The bug is called a
delimiter. When the get list command looks for a string, it
also looks for a space, comma, or carriage return to end or
delimit the string. Dwell on this point for a while. Getting
a single character, number, or string without a space or
comma will solve this minor dilemma, and in PL/I the
underscore character ("__") is commonly used to make
the code readable. Here's an example of this.

Karen__Lynn__Hunter

is acceptable as a single string, or for that matter, a label.

Strings with delimiters like

William P. Hogan

will need someting else to get them entered. That
something is EDITED INPUT.

At this point, I'm going to halt right in the middle of Chapter 1
and save the rest for the next article in this continuing series.
Stay tuned for edited input, the call, blocks, and other PL/I
niceties.

—S0987

00 06

20 41

20 3A

20 41

20 55

20 54

20 4F

20 00
201
—G0000

A>A:SYSGEN

Source Disk?)press RETURN to skip):<cr>

Destination Disk? (press RETURN to skip): A<cr>

A>ERA ATEMPSYS.COM

If you do not see the Digital Research Copyright at memory location

0990H, try lookng at 0810H, 0890H, 0910h or 0A10H. The correspon-

ding auto-start command locations would be 0807H, 0887H, 0907H or

0A07H. H

STOK SOFTWARE, INC.
Humanizing the Computer

Back RestiTMNO PROBLEM WE'VI
USING BACKREST

JUST RESTORE IT

'PROF EASY
WE LOST THE
MASTER FILE''TM

BACKS UP ANr MAKU uibK lu
FLOPPY DISKS AND ALLOWS

SIMPLE RESTORATION LATER, /

Hard Disk
Backup,
Restore
and more!

Put your knowledge of your office environment into your computer so
that your personnel will be properly guided in your absence.

STOK PILOT is a control language that allows easy development of a
menu driven environment as well as an on line instructional utility for any
CP/M or MP/M application. It can guide the user through an entire
process without requiring the user to enter cumbersome system com-
mands, hence making the system transparent to the user.

STOK PILOT can chain to any “COM” file program, or series of
“COM” files, and regain control when the last program ends. This, and
other unique features make it easy to design complete turnkey systems.

Disk and manual - $129.95. Manual alone - $14.95. • Incremental and Full backup.
• True copying of random files.
• Split large files if necessary.
• Migrate or delete selected files. $99.95
• Automatically restore bad files.
• Print Management reports.
• Requires CP/M 2.2, CP/M 3 or MP/M.

THE
RANDOM in
HOUSE

MasterCardVISA

SuperDO & SuperSUB - $29.00
SuperDO allows the CP/M operator to type a string of commands that will

execute one at a time. So you can walk away for a while and let your
computer do its thing. Example:

A> DO ASM PROG1; LOAD PROG1; ASM PROG2; LOAD PROG2;DIR

SuperSUB is an enhanced SUBMIT command that will run on any stan-
dard CP/M 2.2 system. It runs faster than SUBMIT because it buffers the
commands in memory.
Random House and the House design are TM of Random House, Inc. CP/M - MP/M are
TM of Digital Research, Inc. Dealer inquir ies invited.

ELECTRONIC
THESAURUS®

Stok Software Inc.

17 West 17th St.
New York, NY
10011
212/243-1444

$140.00

Lifelines/The Software Magazine, Volume IV, Number 1 25

feature Auto-Start Your CP/M

by Steven Fisher
After much head-scratching, we have come up with a way
to patch the disk-resident copy of the standard Digital
Research Console Command Processor (CCP) so your
CP/M-80 1. x or 2. x computer will automatically run a
program when first turned on. This article describes the
procedure for creating a start-up command by using the
utility programs supplied with CP/M-80.

sic ends). The BIOS must have cold boots go to the CCP
base and warm boots go to three bytes past the CCP base
for auto-start to work properly (refer to Figure 2).
Some disk controller manufacturers support more than
one disk density or format simultaneously. They often
record the first diskette track in a constant density/format
so their software can read the data that described the

A few manufacturers have provided a mechanism for in-
voking a user-specified program when the system is first
turned on. Magnolia CP/M for Health/Zenith uses
SETAUTO to allow you to specify whatever command you
want; that flexibility and convenience are all you need.
Some computers have been set up to always try to run a
manufacturer-specified program. The Osborne-1 at-
tempts to run a program called AUTOST; that approach
leads to having the same program under two names, or
having different programs with the same name. Some
computer vendors allow inserting an "auto-start" com-
mand within the hardware-specific Basic Input Output
System (BIOS) portion of the operating system. Having to
regenerate the operating system just to change your auto-
start command is an unnecessary chore, and the potential
for harm rightfully scares most computer users. Many
CP/M computer systems do not provide a method of
automatically starting a program. But take heart, for we
have a simple solution.
The Console Command Processor for CP/M-80 consists of
two three-byte jump instructions, followed by the com-
mand buffer (refer to Figure 1). The command buffer
follows the conventions described in the "CP/M Interface
Guide" for the "Read Buffer" system function (OAH);
there is a maximum length indicator, followed by the cur-
rent data length, followed by the data which is terminated
with a null (OOH). As distributed by Digital Research, the
current data length is zero, and the buffer contains sixteen
spaces (20H) followed by the copyright statement.
Dr. Gary Kildall wrote the Console Command Processor
to allow it to either use or ignore whatever data might
already be in its command buffer. When the CCP is
entered at its base, it scans the buffer, looking for a null to
determine the size of its command. An empty command
buffer generates the familiar "A>" prompt. When the
CCP is entered three bytes past its base, the command
buffer is assumed to be empty and the input prompt is
displayed.

The CP/M operating system owes its widespread use to
the fact that it was designed to be easily adapted by a com-
puter manufacturer. All of the information necessary to
incorporate a specific component into CP/M is contained
within the Basic Input Output System (BIOS). Being
hardware rather than software oriented, many disk con-
troller manufacturers have incorrectly implemented the
BIOS portion of the operating system to enter the CCP at
its base for both "cold boots" (when the system is first
turned on) and "warm boots" (when a program or intrin-

other data tracks. This mixed-mode recording is
hardware-specific and not discernible by any standard
software techniques, otherwise a single program could
painlessly invoke auto-start on every system. All is not
lost, because even mixed-mode computers have a way to
read and write the system area of their disks.
Digital Research describes a GETSYS routine for loading
the operating system area of a disk into memory (tracks 0
and 1 on a standard 8-inch 3740-format diskette), plus a
complimentary PUTSYS procedure for writing it back.
The SYSGEN.COM program contains these access
methods, already customized for your disk controller's
idiosyncracies. If you can format a new disk and transfer
your operating system onto it, you can install autostart.
Once you have decided what your initial command line is
going to be, write it down. Use an ASCII-Hexadecimal
conversion chart (refer to Figure 3) to translate the
characters into two-digit byte values. Write the two-digit
hexadecimal length of the ASCII command line in front of
the byte value of the first character (ten through fifteen are
OA-OF). Write two zeros after the last byte value to ter-
minate the command with a null. These are the values
you will insert, or "patch," into the CCP by following the
procedure outlined in Figure 4. Once the patch has been
completed, remove your disks and turn off the computer.
After waiting a few seconds for its capacitors to drain
residual current (and thereby "forget" what was in
memory), turn it back on and insert the disk you just
modified. The system prompt should be immediately
followed by the command you installed.
If a different command appears there, your BIOS is
already overlaying the memory-resident CCP's command
buffer and you must disable the BIOS auto-start insertion.
An auto-start command reappearing without your reset-
ting the computer indicates that the warm boot is entering
the CCP at its base, so you'll have to modify the BIOS. Not
having any command appear would indicate that your
disk was write protected, your cold boot does not enter
the CCP at its base, or an empty auto-start command is
being placed in the memory-resident CCP by the BIOS.
Either unprotect your disk and start over, or change the
cold boot BIOS logic.

Once your auto-start is working properly, you can change
the command by repeating the patch procedure in Figure
4. Whenever you want to disable auto-start, install an
empty command line consisting of a zero length and a ter-
minating null (00 00). It's simple, when you know how.

Lifelines/The Software Magazine, June 1983

Figure 1 — The Structure of the Console Command
Processor
The SYSGEN utility program from Digital Research is used to read and

write the portion of a CP/M disk that contains the operating system. The

memory image of the system area of the disk is located below the

memory where it would normally reside; this lower-memory version is

called the “sysgen image.” In a standard sysgen image of CP/M-80, the

Console Command Processor occupies the memory from 0980H

through 117FH. The instruction at location 0980H transfers control to a

portion of the CCP that scans the command buffer at 0988H to determine

the data length, which is then stored at 0987H. The instruction at 0983H

transfers control to a routine that sets the data length to zero.

0980 0983 0986 0987 0988

STA 0001H

SHLD 0001H ; Warm Boot linked

LXI H.BDOS ; BDOS Entry

STA 0005H
SHLD 0006H ; BDOS linked

LXI B,0006H ; Default Buffer

CALL SETDMA

(remove any code movng data to CCP + n)

LXI SP.CCP-2 ; Reset stack

LDA 0004H ; Get current drive

MOV C,A

RET ; Let CCP take over

Figure 3 — ASCII To Hexadecimal
(Base 16) Conversion Chart
The Digital Research Dynamic Debugging Tool (DDT) memory-

substitute command (S) requires that the new memory values be given in
hexadecimal numbers. The following chart lists all of the ASCII
characters likely to be used within an auto-start command:

JMPUSECMD JMPGETCMD MAX LEN DATA . .. 0
C3 5C xx C358 xx 7F 00 2000

Figure 2 - Proper BIOS Implementation For Auto Start
MSIZE EQU 62 ; Size of system in K
BIAS EQU (MSIZE-20)*1024 ; Offset to min imum 2.2
CCP EQU BIAS + 3400H ; Base of CCP
BDOS EQU CCP + 0B06H ; Base of BDOS
BIOS EQU CCP + 1600H ; Base of BIOS

ORG BIOS ; Bios begins here
JMP COLDBT ; Cold Boot Entry

WBENT: JMP WARMBT ; Warm Boot Entry
JMP CONST ; Console Status
JMP CONIN ; Console Input
JMP CONOUT ; Console Output
JMP LIST ; Printer Output
JMP PUNCH ; Auxiliary Output

JMP READER ; Auxiliary Input
JMP HOME ; Track 0, Sector 0
JMP SELDSK ; Select Disk
JMP SELTRK ; Select Track
JMP SELSEC ; Select Sector
JMP SETDMA ; Define DMA Buffer
JMP READ ; Read A Sector
JMP WRITE ; Write a Sector
JMP LISTST ; Printer Status (2.x)
JMP SECTRAN ; Sector Translate (2.x)

COLDBT: SUB A ; GetaO
STA 0004H ; Use Oof A:

ASCII HEX ASCII HEX ASCII HEX ASCII HEX

20 0 30 @ 40 P 50
I 21 1 31 A 41 Q 51

#

$

°/o

&
J

(

)

, 2C < 3C L 4C / 5C
— 2D = 3D M 4D] 5D

2E > 3E N 4E t 5E

/ 2F ? 3F O 4F < 5F

{ 7B 7C } 7D 7E

Figure 4 — Inserting an Auto-Start Command in the
CCP
By using the standard util ity programs supplied with your CP/M system,

you can create your own command to be used when your computer is

first turned on. For instance, to have your computer automatically use

the command “A:AUTO” (06 41 3A 41 55 54 4F 00), just type what is

underscored:

A>:SYSGEN

Source Disk? (press RETURN to skip): A

Insert Source Disk in A, then press RETURN when ready:

Destination Disk? (press RETURN to skip): <cr>

A>SAVE 50 ATEMPSYS.COM

A>A:DDT ATEMPSYS.COM

NEXT PC

3300 0100

—D0990

0990 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 COPYRIGH

09A0 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1979, DIGI

09B0 54 41 4C 20 52 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH

(hardware initialization would go here)

LXI H,CCP ; point to CCP

SPHL ; Stack below CCP
PUSH H ; Will go there

JMP GOCPM ; Initialize page 0

WARMBT: LXI SP,CCP ; Stack below CCP
LXI H,CCP + 3 ; CCP Re-entry
PUSH H ; Will go there

(reload CCP and BDOS, and reselect curr drive)

GOCPM MVI A,0C3H ; JMP instruction

LXI H,WBENT ; BIOS Warm Boot Entry
Lifelines/The Software Magazine, Volume IV, Number 1 continued on page 25 Z7

Now dBASE II is made easy with Quickcode by Fox &
Geller. QUICKCODE is a program generator, a computer program which writes com-
puter programs.

FAST AND SIMPLE
With QUICKCODE you can generate a customer database in 5 minutes. Its that

fast. All you have to do is draw your data entry form on the screen. It’s that simple!

J NO PROGRAMMING REQUIRED j
QUICKCODE writes concise programs to set up and maintain any type of

database. And the wide range of programs cover everything from printing mailing labels
and form letters, to programs that let you select records based on your own requirements.
There are even four new data types that are not available with dBASE II alone.

YOUR CONTROL
And since you work directly with your information at your own speed and

your own style, you maintain complete control. Telling your computer what to do has
never been so easy.

QUICKCODE, by Fox & Geller. Absolutely the most power-
ful program generator you’ve ever seen. Definitely the
easiest to use.

Ask your dealer for more information on QUICKCODE and all the other
exciting new products from Fox & Geller. FOX&GELLER

Fox <& Gel ler , Inc. Dept. L IF 001 604 Market Street Elmwood Park, N.J. 07407 (201) 794-8883

QUKKCOOE trademark of Fox & Geller, Inc
dBASE II is a trademark of Ashton Tate

28 Lifelines/The Software Magazine, June 1983

Macros;HPINPU* 0114 HPOUT2* 0123I NFACT* 011D

3 Undefined Global(s) <— L80 also tells us that three labels
are external

*B:HPIMATH/S <— Tell L80 to search the math library

*/U

Data 1000 165E

< — Ask for a memory map and list of
any undefined globals.

Program 0100 0644 <— L80 obliges with a memory map,
no undefined labels

*B:TSTFAC/N/E

Data 100
Program 0100

165E
0644

<— Tell L80 to save program as
'TSTFAC.COM” and return to
CP/M

[0000 165E 22] < — L80 shows memory map, total
program length, and number of
sectors saved (22).

AO> < — Back to CP/M

Symbols:

ASK 0039” BDOS 0005 CPM 0000 CR 000D
CRLF 0028’ CRLFSM 0036" HPINPU 0014* HPOUT2 0023*
INSNUM 004A” LF 000A LOOP 0008’ NFACT 001D
PRTBUF 0009 SIGNON 0000” TSTFAC 0000’

No Fatal error(s)

Sampie run of TSTFAC prog ram: Listing 6

AO>B:TSTFAC<cr>
Test program for high precision integer math factorial
Enter a number: 45 = <— try 45. Note that input is terminated by ’ = ’.

119,622,220,865,480,194,561,963,161,495,657,715,064,383,733,760,
000,000,000

t— program displays answer to 45!
Enter a number: 32 =

26,313,083,693,369,353,016,721,812,160,000,000 < - answer to 32!

Enter a number? 99= <— Let’s try a big one; Test of the FACTORIAL function. Listing 5
933,262,154,439,441,526,816,992,388,562,667,004,907,159,682,643,816,
214,685,929,638,952,175,999,932,299,156,089,414,639,761,565,182,862,
536,979,208,272,237,582,511,852,109,168,640,000,000,000,000,000,000,
000

t— anybody care to check this?

Enter a number: tC <— return to CP/M flj

; 07/23/82 by l Fhomas Hill

; system equates

CPM EQU 0
BDOS EQU CPM + 5

PRTBUF EQU 9
CR EQU ODH
LF EQU OAH

; declare external modules
EXTRN HPINPUT ; input module
EXTRN HPOUT2 ; output module
EXTRN NFACT ; factorial module

CSEG

TSTFAC: LXI D,SIGNON
MVI C,PRTBUF
CALL BDOS ; say what we are doing

LOOP: LXI D.ASK
MVI C.PRTBUG ; ask for number
CALL BDOS
LXI D,INSNUM ; input value storage
CALL HPINPUT ; go get it, tiger!
CALL CRLF ; newl ine
LXI D,INSNUM
CALL NFACT ; form the factorial
LXI D,INSNUM ; factorial now at input

; storage
CALL HPOUT2 ; output it
JMP LOOP ; do it forever.

CRLF: LXI D,CRLFSMSG
MVI C,PRTBUF
JMP BDOS ; pr in taCR.LFat

; console and return
; declare data area

DSEG
SIGNON: DB Test program for high precision integer math

DB factorial’

CRLFSMSG:
DB CR.LF/S’

ASK: DB ‘Enter a number: $’

; value storage

INSNUM: DS 128
END

Version 2 For Z-80, CP/M (1.4 & 2.x) ,
& NorthStar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH— 79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!
FEATURES OURS OTHERS
79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG.
Screen editor with user-definable controls. YES
Macro-assembler with local labels. YES
Virtual memory. YES
BDOS, BIOS & console control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE 11/I l+ version also available. YES
Affordable! $99.95
Low cost enhancement options;
Floating-point mathematics YES
Tutorial reference manual
50 functions (AM951 1 compatible format)

Hi-Res turtle-graphics (NoStar Adv. only) YES
FORTH-79 V.2 $99.95
ENHANCEMENT PACKAGE FOR V.2:

Floating point $ 49.95
COMBINATION PACKAGE (Base & Floating point) $139.95

(advantage users add $49.95 for Hi-Res)
(CA. res, add 6% tax; COD & dealer inquirieswelcome)

MicroMotion
12077 Wilshire Blvd. # 506
L.A..CA 90025 (213)821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.

29Lifelines/The Software Magazine, Volume IV, Number 1

Feature

by David W. Walker
As a member of the small but growing fraternity of Apple
CP/M users, I was very pleased to see Matthew Von
Maszewski's piece in the March 1982 issue of Lifelines, con-
taining a program applicable specifically to the Apple
(and, amazingly, even more specifically to the Apple with
a Sup'R'Term 80-column card—a combination of equip-
ment that I, too, happen to enjoy).

Thunderclock Routine

Of course, the Thunderclock firmware routines are in
6502 code. Executing them directly from CP/M would pro-
duce decidedly unwanted results. Microsoft, however,
has thoughtfully provided Apple CP/M users with a
straightforward way to transfer control to the Apple's
native 6502 CPU temporarily, to execute routines in 6502
code. The method is simply to store the entry address of
the 6502 routine in the location F3D0H (reserved for that
purpose), then write something (anything) to the first ad-
dress occupied by the Z80 Softcard itself. Like the
Thunderclock, the Z80 card will occupy a block of ad-
dresses beginning at EnOOH, where n is the number of the
card's peripheral slot. Since, like the Thunderclock, the
Z80 card might (at least in theory) be in any slot from 1 to 7,
Microsoft's CP/M implementation very thoughtfully
stores the card's first address at F3DEH-F3DFH, so you
can find it. Therefore, the standard technique for calling a
6502 subroutine is to store the routine's address (in the
form that the 6502 will recognize) at F3D0H, load the Z80
card address from F3DEH into the Z80's H,L register pair,
and write to that address by executing MOV M, A (in 8080
code) or LD (HL), A (in Z80 notation).
In this case, we also want to pass a "control" byte to the
6502, since the Thunderclock's "write" routine expects
such a byte in the 6502's accumulator. Again, Microsoft
has anticipated the need, and has provided a way to pass
data to any or all of the 6502's registers, by storing the data
in a "pass" area of memory beginning at F045H. The byte
contained at F045H will be passed to the 6502's ac-
cumulator before calling the subroutine pointed to by
F3D0H; the byte contained at F046H will be passed to the
6502's Y register; and successive bytes will be passed to
the 6502'2 X register, its processor status register, and its
stack pointer, respectively. In my CLOCK program, only
the accumulator data is significant, so we don't care what
may be at locations F046H-F049H.
Like the Softcard, the Thunderclock card might in theory
be plugged into any of slots 1 through 7 in the Apple II. It
is simple to call the clock's "write" and "read" routines if
you know what slot it will be in. You may decide to move
the clock, however; so it's better to take the slight extra
trouble to start with a routine that finds what slot the clock
is in, and uses that information to set the call addresses
passed to the 6502. Finding the clock is straightforward:
compare the bytes contained in the first three addresses
associated with each slot to the known first three bytes of
the clock card, until a match is found. (If no match is
found, then the Thunderclock isn't there, and the routine
can avoid attempting to call a non-existent firm-
ware routine -- which would almost always result in a fatal
"hang" of the system.) The Thunderclock's first three
bytes are 08H, 78H, and 28H, in order. As far as I know, no
other firmware card available for the Apple][has those
first three bytes.

Lifelines/The Software Magazine, June 1983

Following that salutary precedent, I offer herewith a short
program, which applies to a similarly limited subset of
CP/M users (specifically, users of Apple CP/M with the
Thunderclock peripheral card). Fbr Apple CP/M users
without a Thunderclock, it offers an example of calling
routines on a peripheral card from the CP/M environ-
ment, which can be adapted to other brands of clock card
or to other kinds of peripheral cards.
Like most peripheral cards for the Apple II, the
Thunderclock contains a firmware control routine to facil-
itate the process of reading the current date and time from
the clock registers (as well as some other functions, such
as setting the clock, that I have not attempted to use in the
enclosed program). The entry addresses for the firmware
routines depend on the Thunderclock's physical location
— which of the Apple's peripheral slots it is plugged into.
In slot 4, for example, the clock firmware appears at ad-
dresses $C400-$C4FF. Because Microsoft's Z80 Softcard
very cleverly translates the "normal" Apple memory ad-
dresses in order to get the contiguous block of memory
the CP/M expects, the "Apple" addresses $C400-$C4FF
would appear to the CP/M environment as E400H-
E4FFH. If the clock card were, instead, in slot 5, the firm-
ware would appear at $C500-$C5FF (E500H-E5FFH); and
so on.
Reading the Thunderclock from a 6502 assembly lan-
guage program is a fairly simple matter. The calling
program needs simply to place a specified "control"
character in the 6502 accumulator (to tell the firmware in
which of four available formats to return the current date
and time), call the "write" routine at $CnOB (where n is
the clock's slot number), then call the "read" routine at
$CnO8. The firmware returns a string in the specified for-
mat, beginning at address $200 (or F200H, to CP/M). That
string can then be moved somewhere else for other use or,
as in my program, sent to the console using the "print
string" function provided by CP/M.
The area from $200-$2FF is reserved as an input buffer in
most of the languages that run on the Apple II. Fortunate-
ly, Microsoft's CP/M implementation has enough free
space at the corresponding locations (F200H-F217H is all
we need), so that the clock routine doesn't clobber any-
thing by putting the string there. If you have patched any
of the I/O vectors, however, you might be using the area
beginning at F200H for something important. In that case,
you would add to my program a routine to save the con-
tents of F200H-F217H before calling the clock write rou-
tine and to restore those contents after printing the

30

ond character, to skip the quote. Other formats, for
reasons related to the way that Apple's two BASICS inter-
pret the input buffer contents, do not begin with a quote
character. If you were using one of those formats, you
would naturally begin printing with the first character.)

The Microsoft Z80 Softcard contains a Z80 CPU, and can
execute programs written in Z80 code or in the more com-
mon 8080 subset. I have written the enclosed program in
8080 assembly language, so that it can be assembled using
the ASM program that comes with the Softcard. The text-
file can be prepared using the supplied ED utility, which is
adequately if not brilliantly explained in the documenta-
tion supplied with the Softcard. For the new user, coming
from Applesoft, Pascal, or almost any of the text editors
available for the non-CP/M Apple, ED will appear strange
and obscure; but it can be mastered with a little practice.
Take my word for it. When the textfile has been entered
and saved to disk — using, say, the file name
CLOCK.ASM — then it can be assembled by typing the
command ASM CLOCK, and converted to an executable
COM file by typing LOAD CLOCK. Then, typing CLOCK
from the CP/M command level will run the program and
display the current date and time on the console screen.
Nothing to it, right? f]

The clock finder routine that I have used starts with slot 7
and moves downward, exiting when the clock has been
found or all the slots from 7 to 1 have been checked. If the
clock is missing or is in a lower-numbered slot than the
Z80 Softcard, the finder routine will access the Softcard's
address, the location that turns off the Softcard and
transfers control to the Apple's 6502. Once again,
Microsoft has anticipated our needs and avoided prob-
lems. Only a "write" operation to the Softcard's address
will transfer control to the 6502. A "read" operation to that
address will simply return a byte of data.

As I mentioned above, the Thunderclock firmware can
return the current date and time in any of four formats. I
have elected to use only one—the format THU NOV 11
8:35:24 AM—to keep things simple. The Thunderclock
operator's manual explains the other formats quite clear-
ly; and it is simple to substitute any of the others by
substituting the appropriate control character for the "/ "
that I have used, using the appropriate string length in
calculating where to put the "$" string terminator before
calling CP/M's string output routine, and using the ap-
propriate starting address for the string. (The string
returned in response to the "I " control code begins with a
quote character, so I begin printing the string at the sec-

feature A Review of Alpha Software’s Data Base Manager

by Ron Watson
The computer industry is probably the most buzz-word
prone area of human endeavor. Surely, there must be a
small, secret group of public relations experts hiding in
the sewers of San Jose, or camped out in a wilderness area
near Seattle or White Plains, who spend all their waking
hours devising new terms to be infiltrated into the lexicon
of computer professionals. Unfortunately, they provide
only the terms, allowing the definitions to be made up to
suit the purposes of the ones who use them. The buzz-
words sprout like dandelions in bloom to have their seeds
spread by the winds of the media to every corner of our
field. Many are used only briefly and then fade away,
forgotten. But some take root and become permanent
members of the language. After a while, everyone uses
the successful ones casually, with the full assurance that
the listener understands even if the speaker is not too cer-
tain of the meaning. Sometimes the new term itself
flowers and gives birth to derivative terms which add even
more respectability to the parent.

Such a term is "data base." It has been with us quite a
while by computing standards, well over fifteen years. It
has spawned 'data base management system," "data
management," "DB/DC," and many others, as well as
various new job titles in large organizations and, inciden-
tally, a data processing specialty. I would expect such a
ubiquitous term, one that we all use so often, one that
George Fenniman would have said was 'heard around the
house every day', I would expect such a term to have a
good, solid, well understood definition. Not so. The
definition may exist; it is certainly not well understood.
As proof of this, the term can be found describing such

completely different products as dBase II and Alpha Soft-
ware's 'Data Base Manager,' the later being the subject of
this review. Alpha's product may serve to lend precision to
the term "data base" by acting as an example of the ab-
solute minimum capability required to qualify for its use.

But first the good news. Data Base Manager is well
packaged. The manual is in the now familiar nine by eight
inch binder used by IBM and comes with plastic inserts to
hold the master program and demonstration diskettes. A
tutorial audio cassette is also included. Except for a slight-
ly unpleasant type font, the documentation is well pro-
duced, and well written.

The text is written assuming the reader is completely un-
familiar with the hardware, and is very consistent in this
assumption. It is organized in tutorial fashion, and so
does not function very well as a reference manual. After I
had become familiar with how to use the software, I had
difficulty locating answers to specific questions in the
manual.

The tutorial cassette is meant to be heard while one uses
the program with the demonstration data diskette provid-
ed. This is well done, properly timed, and quite effective.

What we have here is something that looks like a Ferrari
and drives like pushcart.

The first procedure one is asked to do is back-up the
master disk. A .BAT file is provided for the purpose. It
runs a program that will make two copy-protected master
disks from the original. For some reason known only to
Alpha, this procedure uses just one disk drive (the system

Lifelines/The Software Magazine, Volume IV, Number 1 31

requires two to function at all), thus requiring the operator
to alternate master and copy in and out of drive A thirty or
forty times. Since the master can not be write-protected
during this procedure, there is some danger of getting
hands crossed and destroying the master.
The normal start-up procedure is to place a master disk in
drive A and boot the system. This brings up a request to
insert a data diskette in drive B. If the data diskette con-
tains a data base file, then it is used. If no data base file is
found, the file initialization menus are brought up, and
we encounter a limitation: only one file of data per
diskette.

The initialization procedure allows the user to name up to
19 fields of up to 24 characters each. A field name may con-
tain no more than ten characters. No data type may be
specified; all fields are alphanumeric by definition. Once
the definition is finished, only the field names can be
changed. No facility is provided to reformat or re-arrange
the data once defined.
Incidentally, all operator input is apparently programmed
with something very much like the BASIC "Input" state-
ment: no commas or colons can be entered. No error
recovery is provided, so entering a comma gives one the
BASIC message zredo from start.' The initialization screen
suggests that the operator press the num-lock and caps-
lock keys; the first because none of the cursor control keys
on the keyboard are used, the second because prompt
responses require upper case input. If they wanted to
simplify the program by eliminating code to shift lower
case to upper on command responses, they should have
set these keys programmatically, a simple procedure on
the IBM-PC.
The main menu screen contains a copyright notice and
the author's name, the data base name assigned when the
file was initialized, and a list of eleven items from which to
choose.

Item #1 allows the user to enter new data. The program
puts up a screen showing one field per line in the same
order as they were defined. Data is entered from top to
bottom, one field at a time, terminating each field with the
enter key. A semicolon entered as the first character of a
field causes the cursor to return to the previous field. A
slash may be used to duplicate data from the previous
record. When the last field is complete, the operator has
options to add the record to the file, make changes, return
to the menu or bypass the record. Adding a 120 character
record took 6.2 seconds and seemed slow. An inadvertent
comma causes the BASIC message "redo from start" to
display on the screen line following the line in error, mak-
ing a mess of the display. If too many characters are
entered, the field is cleared and the cursor positioned to
the first field position, but no beep is sounded. The input
procedure was apparently designed with more concern
for the ease with which it could be programmed then for
the ease with which it could be used.
Returning to the main menu, selecting item #2 allows the
user to view the data. This brings up a sub-menu with
three selections: view all data, view a range of records,
and view a single record. All three options present a
screen similar to the data entry screen; the first shows all
the records in the order in which they were added to the
file, the second and third options allow the user to enter a

record number or range of record numbers to be
displayed.
The real lack of any sophisticated data structure begins to
become apparent. One may only view data at this point if
an arbitrary value, record number, which has nothing to
do with the data from a user's viewpoint, is known. The
seriousness of this deficiency becomes more apparent in
the examination of subsequent data presentation options.
Item #3 on the main menu, is labelled 'SORT DATA,' and it
is bound by this system to item #4, 'SEARCH DATA.'
Before either procedure can be used, the user must have
defined a report using menu item #8, 'FORMAT
REPORTS.' This restriction applies because the only thing
that can be done with sorted or searched data is to prepare
a report. Sorted data can not be searched, but then search-
ed data can not be sorted, either.
The file can be sorted on the first five characters of one
field in either ascending or descending sequence, using
either numeric or alphabetic logic. Since there is no provi-
sion to define a field's content as either numeric or
alphabetic, the sort procedure will ask the user which is to
be done. A fifty record file took a minimum of 21 seconds
and a maximum of 31 seconds to sort; the reason for the
variation was not apparent. When the sort is complete,
the operator is shown a list of the defined reports, and
asked to select one to be used to display or print the data.
The report procedures are discussed below.
Item #4, search data, is really quite powerful compared to
what we have seen so far, though it would more properly
be called 'select data'. There is a three field search with
logical operators, a "wild card" search that will scan a field
for a substring, a matching field search, and one called
Soundex, which will look for phonetic equivalances.
Sound pretty good? Keep reading.
Subitem #1, the three field search, requests the user to
select the field number to be searched from the list of
defined data items, then the logical operator to be used
and finally the contents to be compared. This is repeated
once for each field to be searched. The search will be done
for those records that meet all the selection criteria
entered, though this is not made clear in the text. There is
no way to use the "logical or" connective.
Subitem #2, the "wild card" search, will test a field's con-
tents for the substring entered by the user. No mention is
made in the manual about upper/lower case difficulties,
and I didn't test to see what might or might not work. This
option allows only one field to be searched for one string
at a time.

Subitem #3, search for records, is the only way to look at a
group of records without having a report format defined.
The search is done for all records with a particular field
matching the constant which is entered in response to the
prompt.
Subitem #4, the phonetic search, will select records with a
field contents that is phonetically equivalent to the input
data. Though not tested extensively, this seems to func-
tion as promised.
So, we have all these ways to select records from the data
file; what can we do with it once it is selected? Why, we
can make a report, of course, but that's all. Well, maybe

32 Lifelines/The Software Magazine, June 1983

that's enough. Maybe a really fine report generator will
make up for the limitations observed so far.

A report is created by selecting item #8 from the main
menu, 'FORMAT REPORTS.' The user is first asked for a
name to be given to the report. A maximum of ten reports
may be defined. The name "LABEL" is special in that a
mailing label format is generated instead of a report for-
mat. Speaking of names, the manual makes no mention
of the need to keep the report names unique, but the
name entered becomes the name used on a file containing
the report specifications which is written on the data
diskette. Using the name of a report that already exists
without first requesting deletion of the original name
seems to create considerable confusion for the program.
The problem can be resolved easily enough by an ex-
perienced user: he can use DOS to delete the specification
file from the data diskette. This bug is not as serious as it
sounds: how often would someone give two reports the
same name? The really serious problem with the report-
ing capability is that there is so little.

The method of specifying the report is simple enough.
The user does have to know the total number of fields to
be printed before he starts, and as there is no list of fields
shown to him while he specifies the report. He also has to
know what numbers have been associated with his data
fields. Once the report has been defined and tested, there
is no way to change it except by respecifying it entirely. But
that's not so serious, nearly everyone will get it right the
first time, and for those who don't, retyping the specifica-
tion is an appropriate punishment.

I had considerable difficluty understanding what could
be done with the formatted reports. Part of the difficulty
stemmed, no doubt, from the disdain I had accumulated
for the package up to the point I began to experiment with
this feature. Perhaps I did not give it a fair test. After twen-
ty years of struggling to design reports that are infor-
mative and esthetic, I have little tolerance for the
amatuerish results available with this program. The data
could be listed, that was clear, but there was no way to
truncate a field on the report. No editing of numeric fields
was possible. There was only one control break available,
and the method of requesting it was obscure. Some total-
ing was possible, but only one calculated field could be
printed. It seemed everything I wanted to do was impossi-
ble or yielded unsatifactory results.

There is an automatic tabulation option that allows the
user to have the program determine the column positions
for each field and then change the generated columns
afterwards. The specification procedure is simple but
slow, and as mentioned above, changes can only be made
when the report is originally specified. One could learn to
live with these shortcomings, I suppose, by making print-
outs of the record layout and report format specifications
to be referred to while working with the report generator.
A preliminary sketch of the report would also be a good
idea as the trial and error method is made too time con-
suming by the inability to edit report specifications after
the results are seen.

Conclusion
I have tried to imagine some situation where this program

might be of some use to someone. But any application
simple enough to be practical would be better done with a
small metal box of 3 x 5 index cards. Even the greenest,
most timid new user will quickly outgrow this package.

Recent issues of PC magazine have carried a two page,
two color ad that promotes this package as the solution to
everyone's data management problems. Well, all the ads
in world will not create usefulness where none exists.
Alpha Software would be well advised to rearrange their
corporate budget so as to allow more money for design,
even if they have to reduce the amount spent for
promotion. H

Table 1—Facts and Figures
Package: Data Base Manager by Alpha Software Corp.,

Burlington, Mass.
Price: $245
Available for:

IBM Personal Computer.
Required Supporting Software:

PC DOS.
Memory Requirements:

Unknown minimum. 64K max.
Diskette Capacity Required:

Two drives. Will use single or double sided. Data files
restricted to one diskette, program must remain in
drive A.

Utilities provided:
Program backup.

Record size and type of limitation.
Internal storage is fixed length ASCII with carriage

return and line feed.
Maximum of 19 fields, maximum of 24 characters per

field.
Report lines up to 132 characters.

User skill level required:
All documentation and procedures assume no user

familiarity with either hardware or software. Audio
cassette included that steps a new user through a
tutorial file that is also included.

System upgrade policy:
Not known.

Table 2-Qualitative Factors
Documentation:

Organization for learning 7
Organization for reference 5
Readability 6
Includes all needed information 4

Ease of use:
Initial start up 3
Conversion of external data NA
Application implementation 3
Operator use 4

Error recovery:
From input error 4
Restart from interruption 4
Restart from media damage 4

(continued on next page)
33Lifelines/The Software Magazine, Volume IV, Number 1

“More documentation?
Go to a book store ”

m“Training? Call a
computer school”

“Technical support?
Call the publisher”

Interested in dBASE II or 1-2-3?
Beware The Dreaded Finger Pointers!

Sound familiar? Does your
dealer turn into a “finger
pointer” when you need help?

At SoftwareBanc we offer a
Complete system that doesn’t
stop when your software is
delivered.

Careful Product Selection
Do you get bewildered by
the endless lists of soft-
ware you find in most ads?
Let us be your quality control
department.

We only sell the best pro-
grams on the market. After a
thorough evaluation we chose
dBASE II™ for data process-
ing, and 1-2-3™ for financial
management.

Our complete line of add-on
products help you to continue
to get the most from your
software.

Expert Technical Support
When you buy software from
us, you can rest assured that
help is only a phone call
away. Just call us at (617)
641-1235 for all the free
support you need.

Free dBASE IF User’s Guide
Order dBASE 11™ from us, and
you’ll receive a free copy of
our dBASE II™ User’s Guide.
You can also buy the User’s
Guide first for only $29, and
then receive a full credit when
you buy dBASE II.™
French Translation
La Commande Electronique
5 Villa Des Entrepreneurs
75015 Paris, France
Japanese Translation
JSE In t ’ l
9F Toyo Bldg. 6 -12 -20 Jingmae
Shibuya-ku Tokyo, Japan 150

Prices You Can Afford
11-2-3™Call for price*
tdBASE II™ $479
fABSTAT™ $379
dBASE II™ User’s Guide $29
DBPIus™ $95
dGRAPH™ $199
dUTIL™ .. $69
dNAMES™ $109
QUICKCODE™ $199
TEXTRA™ $70*
‘Only available for IBM PC with MS-DOS.
tNo-risk 60 day money back guarantee

Free Catalog
If you want to learn more about
SoftwareBanc, call or write for our
free product catalog.
SoftwareBanc
661 Massachusetts Avenue
Arlington, Mass. 02174
To order call: (800)451-2502
(617) 641-1241 in Mass.
For technical support call:
(617) 641-1235
™Manufacturer’s trademark
Payment may be made by: MasterCard, Visa, check,
C.O.D., money order. Mass, residents please add
5% sales tax. Add $5.00 for shipping and handling.

Free 1-2-3 ™ Utility
1-2-3 TRANS is a menu
driven program that will
quickly and easily transfer
files from dBASE II™ to
1-2-3™ and back again.
Free with 1-2-3™ purchase!

1-2-3 ' & dBASE IF Classes
Want more in-depth informa-
tion about dBASE II™ or 1-2-3™?
Attend a SoftwareBanc Semi-
nar near you. Each session runs
from 9 to 5, and costs $175.

1
I

SoftwareBanc
Order Toll Free

1-800-451-2502
(617) 641-1241 in Mass.

I * NJJ SoftwareBanc 11 1 *Tj
Arlington. MA 02174 1 B

Los Angeles
July 18-22
Washington, D.C.
Aug. 29-Sept. 2

Anchorage
August 11-12
New York City
September 19-23

34 Lifelines/The Software Magazine, June 1983

Software Notes
Michael Olfe Macro of the Month

b8e b9k b6k b6e
create a look-up table for ALT codes

iQWERTYUIOP ASDFGHJKL ZXCVBNM$

b9e

[OgType key to be redefined or ESC to stopqn
@k = 27 _ iKey: $
@k>127{@k-128v0

((@0>15)&(@0x51)){iALT $b6e a @0-16m @tv2 b9e
@2i}
((@0>103)&(@0 x 114)){ iALT F$@0-103V2 }
((@0>119)&(@0 x 132)){ iALT $@0V2}
((@0>83)&(@0 x 94)){ iSHIFT F$@0-83V2}
((@0>93)&(@0 x 104)){ iCTRL F$@0-93V2 }
((@0>58)&(@0 x 69)){ iF$@0-58V2}
}{@ki0v0@kvl}

(20-@x)[i $] iDefinition: $
b7k b7e .iType definitions
b9e b7g
(80-@x)[i $] 27i 91i @0>0{ i0$ @0% }{ @1V2} i"$
b7gi";13p
$qr]

axo±A@8$bte

This macro constructs a key redefinition file for an MS/PC
DOS 2.0 which uses the ANSI.SYS device driver. The new
key definitions take effect as soon as the created file is
TYPEd from the DOS command level, or dumped to the
screen by a program which uses function calls 2,6, or 9 for
screen output. The key redefinition file is an ASCII file
containing escapes, and can be edited like any other
ASCII file. If the named file exists, you have the option of
editing it or using another name. To help humans read the
key definition files, a header on each line gives the key
name and the redefinition in ASCII.

Unfortunately, the redefinitions will not be recognized by
PMATE under DOS2.0, although the macro and PMATE
itself run fine under 2.0. Other editors, like EDLIN and
Final Word, will recognize the redefinitions.

This macro calls a permanent macro called "i," which gets
a string in response to a prompt. "I" is defined as:

qa[g ± Aa$@k = 127 [-d ±][@k = 13[/]@ki]]

[b9kb9et.iName of key definition file?$
#b8m @f ± A@8${gFile exists. Want to edit it (Y/N)? $
(@k = "y)!(@k = ZZY){ btexf ± A@8$}{_}]

(continued from page 2)
34) Matrix printers would replace formed character
printers

35) S100 machines would continue forever

36) The five inch screen on the Osborne was adequate

37) Apple II would be replaced by the Apple III (which
is rumored to be discontinued).

38) Apple's future is dependent upon the success of Lisa.

39) IBM had missed the PC market.

40) The IBM - PC represented a quantum leap in
technology

41) Softcards would disappear from the marketplace
within a few months of their release.

42) Microcomputers will take jobs away

43) Documentation is read

44) The --------- language makes complex programming
tasks trivial (you fill in the blank with your favorite pro-
gramming language).

45) CP/M-80 programs would run under CP/M-86
without modification

46) CP/M-80 assembly language programs could easily be
translated and run in sixteen bit environments.

47) Programs translated/re-compiled for sixteen bit
machines would be faster and more efficient than their
eight bit counterparts

45) And on, and on, and on . . .

I suppose that the best indicator of the validity of such
allegations is that their propagators are for the most part
no longer to be found anywhere.

It is in many respects sad that so many have been led
astray by such irresponsible and capricious claims of a
few. Sadder still is the loss of hundreds of thousands of
person hours which have resulted from placing faith in
such beliefs.

Anyway, I guess I had better go . . . in the immortal words
of Woody Allen zTm due back on Earth."

35
Lifelines/The Software Magazine, Volume IV, Number 1

Software

New Products

WordPlan
Idea Software
PO Box 968
Fremont, CA 94537
This text and data formatting
package allows easy manipulation of
textual and numeric values within
documents. It solves business prob-
lems where numbers are calculated
values and both numbers and text
change frequently. WordPlan lets
you set up your template document
and embed the necessary variables
and equations. Then all you have to
do is change one variable to change
all of the associated equations and
variables. The number of numeric
variables you can have is 200. You can
also use up to 27 text variables. Word-
Plan accepts text from any text editor.
Requirements: CP/M
Price: $195

and types.
Price: $395

FILER
COMPU-DRAW
1227 Goler House
Rochester, NY 14620
This program compacts, archives
and catalogs disk files. Fbr applica-
tions that result in a large number of
relatively small files (6K or smaller),
FILER can result in disk space sav-
ings of several hundred percent.
FILER also archives and catalogs files
with features including date-stamp-
ing and descriptive text. Filer enables
the user to save up to 1000 files of any
type in a single file called a Volume.
The user may describe each file by
over 100 characters of descriptive
text. If updated versions of a file are
saved in the same volume, FILER
automatically assigns them version
numbers. The files in a volume may
be cataloged on the console or printer
or into a disk file. Catalog listings
may be sorted by name, extension
and/or version attributes. FILER is
completely menu- and prompt-
driven.
Requirements: CP/M-80 (8080 or
Z80), 56K. Also runs under CDOS.
Price: $49

FILEBASE
EWDP Software Inc.
POB 40283
Indianapolis, IN 46240
This program processes files of
records comprised of comma
delimited fields. It is menu and
prompt driven. Options include
record selection, merging, sorting,
creating new files, appending to ex-
isting files, selecting out a subset of
fields and modifying their contents,
and rearranging fields or adding new
ones. Records can be selected or ex-
cluded by testing field contents with
a comparator or against a list of up to
300 user entered values. Other
select/exclude methods include a
range or list of up to 1000 record

numbers or by interactive examina-
tion of each record in real-time. Dur-
ing the interactive process, records
can be printed one field per line with
page ejects between records or with
any number of lines between them.
Files can be combined into one new
file or divided into two files.
FILEBASE can convert variable
length records to fixed length or cer-
tain types of fixed length records
back to variable length.
Requirements: CP/M (Z80), 64K
Price: $75

New Books

Hayden Book Company Announces
"Secrets of Better Basic" _________
Secrets of Better BASIC reveals the
sophisticated programming tricks and
techniques used by professional soft-
ware authors for writing faster and
more effective BASIC programs.
Written by Ernest E. Mau and
published by the Hayden Book Com-
pany, Inc. of Rochelle Park, New
Jersey, the book also offers faster and
more effective programs for testing
and debugging programs, more effi-
cient use of memory, string-handling,
using loops and subroutines, and
creating disk files.
The book also includes five appen-
dices that include the ASCII codes
and equivalents, numerical systems
and conversions, some "BASIC" func-
tions, sample disk and memory tests,
and some useful software.
Price $14.95

dBASIC ________________________
Active Software Marketing
1953 E. Apache
Tempe, AZ 85281
This Indexed Relocatable Library for
CB/80 and CB/86 compilers provides
direct access to dBASE II files.
CBASIC programs can read or write
any .DBF or .DBR database in ran-
dom or sequential mode and can
read, modify or create file structures
in native dBASE format. Many
dBASIC functions are direct transla-
tions of dBASE II commands.
"SELECT PRIMARY" is "CALL
SELECT," "USE MYFILE" becomes
"CALL USE ('MYFILE')," "SKIP-8"
translates to "CALL SKIP (-8)" and
"COUNT TO XYZ" is the same as
"XY /= COUNT." APPEND,
DELETE, and RECALL are also in-
cluded. Up to nine files may be open
at the same time and new functions
allow direct retrieval of database
characteristics such as filed names

Using Microcomputers in Business:
A Guide for the Perplexed,
Second Edition __________________
Using Micrcomputers in Business. . . is
a background reference for any pur-
chaser of a micrcoiiiputer system or
software for a small business.

36 Lifelines/The Software Magazine, June 1983

Written by Stanley S. Veit and
published by the Hayden Book Com-
pany of Rochelle Park, New Jersey, the
book describes the advantages and
disadvantages of computerization
and enables the potential user to
make intel l igent purchasing
decisions.

It explains business applications from
the fundamentals of microcomputer
systems to the fine points of word
processors, accounting programs,
data bases, and disk drives. New
chapters focus on the value of elec-
tronic spreadsheet programs and
microcomputer networking.

Price: $12.95

New Versions

NEW VERSIONS
BOSS vl.19
BSTAM-86 for VICTOR 9000

(CP/M-86 & MDOS)
C-FOOD SMORGASBORD vl.3
D-BASE-II v2.40
PAS-3 Medical vl.92
PAS-3 Dental vl.79
Precision BASIC-86 vl.6

(for MS-DOS)
STIFF UPPER LISP v3.1
WORDSTAR SPANISH v3.0
Lattice "C" Compiler vl.04

A w SHflUD DO n>. THE
w emisiow U5v£R,Gawf

Attention Subscribers

Lifelines would like to announce the
reorganization of its staff. We plan to
include the expirations date on the
mailing labels as soon as our new
system is implemented. Look for
reviews on T/MAKER III, Microsoft
FORTRAN, Supersoft FORTRAN,
the Wedge, Prospero Pascal, more on
PL/1-80, and exciting new columns on
MSDOS, etc.

Lifelines 7 The Softw
are M

agazine
1651 Third A

ve., N
ew

 Y
ork, N

ew
 Y

ork 10028

4

S
econd C

lass P
ostage Paid

At N
ew

 York, N
.Y.

E
X

P
IR

A
T

IO
N

..D
A

T
E

 5
1

2
/8

I

